

## CLASS – X MATHEMATICS CHAPTER – 6 ARITHMETIC PROGRESSION (AP)

## **NOTES**

## > Sequence

A succession of numbers formed according to a specific rule is called a sequence.

> Arithmetic Progression

A sequence  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ , ......,  $a_n$ , ...... is called an Arithmetic Progression(AP) if  $a_{n+1}-a_n$ =constant for all  $n \in \mathbb{N}$ .

Or

An arithmetic progression is a sequence in which each term other than the first is obtained by adding a fixed number to the preceding term.

**Common Difference** 

In an AP,  $a_1, a_2, a_3, \dots, a_n \dots$  the value of  $a_{n+1} - a_n$  is called common difference of the AP.

> The nth term (or the general term) of an AP

Let a be the first term and d be the common difference of an AP.

Then the AP is  $a, a + d, a + 2d, a + 3d, \dots$ 

Here, 
$$a_1 = a = a + (1 - 1)d$$
  
 $a_2 = a + d = a + (2 - 1)d$   
 $a_3 = a + 2d = a + (3 - 1)d$   
 $a_4 = a + 3d = a + (4 - 1)d$ 

Looking the above pattern, we can write

$$a_n = a + (n-1)d$$

Thus, for an AP whose first term is a and the common difference is d,

the n<sup>th</sup> term (or the general term)  $a_n = a + (n-1)d$ 



## Sum of the first n terms of an AP

Let a and d be the first term and the common difference of an AP.

Then the AP is

$$a, a + d, a + 2d, \dots a + (n-2)d, a + (n-a)d, \dots$$

Let  $S_n$  denotes the sum of the first n terms of the AP.

Then 
$$S_n = a + (a+d) + (a+2d) + \dots + \{a + (n-2)d\}, \{a + (n-1)d\}$$

And 
$$S_n = \{a + (n-1)d\} + \{a + (n-2)d\} + \dots + (a+2d) + (a+d) + a$$

Adding the above relations, we have

$$2.S_n = \{2a + (n-1)d\} + \{2a + (n-1)d\} + \dots + \text{ to } n \text{ terms}$$

$$\Rightarrow 2.S_n = n\{2a + (n-1)d\}$$

$$\Rightarrow S_n = \frac{n}{2} \{ 2a + (n-1)d \}$$
 ----- (i)

$$\Rightarrow S_n = \frac{n}{2} \{ a + a + (n-1)d \}$$

$$\therefore S_n = \frac{n}{2}(a + a_n)$$

$$=\frac{n}{2}(a+l)$$
 -----(ii)

Thus, for an AP whose first term is a and the common difference is d,

the sum of the first *n* terms,  $S_n = \frac{n}{2}(a + a_n)$ 

$$=\frac{n}{2}(a+l)$$

DEPARTMENT OF EDUC



OF EDUCATION (S)