

തിസ്ക്ഷംഭ നുട് മംജ്യംഗഭ (നംഗ) Department Of Education (S) Government of Manipur

CLASS IX **CHEMISTRY CHAPTER 3 ATOMS AND MOLECULES**

NOTES

Atom - It is defined as the smallest particle of an element which can take part in a chemical reaction.

Law of Chemical Combination

- 1. Law of Conservation of Mass
- 2. Law of Constant Proportion

Law of Conservation of Mass (Antoine L. Lavoisier, 1774)

This law states that mass can neither be created nor destroyed in a chemical reaction.

Law of Constant Proportion (Proust, 1799)

This law states that a pure compound always contains the same elements combined in the same proportions by mass e.g. hydrogen and oxygen combined together in the same proportion of 1:8 by mass.

Dalton's Atomic Theory (1808)

- Matter is made up of indivisible particles known as atoms.
- Atoms are neither created nor destroyed.
- Atoms of one element are all identical. They have the same mass and the same properties.
- > Atoms of different elements combine in fixed ratios to form compounds.
- > When elements combine to form compounds, the atoms of these elements unite in simple whole number ratios to form compound atoms. TICATION (S)
- > The relative number and kinds of atoms are constant in a given compound.

Molecule

- > It is the smallest particle of an element- or a compound which can exist independently and shows all the properties of that substance.
- > Molecule of an element is composed of same type of atoms.
- > Molecules may be monoatomic, di-atomic or polyatomic.
- > Molecules of compounds join together in definite proportions and constitutes different type of atoms.

னிறுசுகுமை யூச நது மூலம் (யூல) Department Of Banipur Government of Manipur

Atomicity - It is defined as the number of atoms present in one molecule of the element or compound.

Types of elements	Element	Atomicity
Non-metal	Helium	1 (monoatomic)
	Neon	1 (monoatomic)
	Argon	1 (monoatomic)
	Hydrogen	2 (diatomic)
	Oxygen	2 (diatomic)
	Nitrogen	2 (diatomic)
	Chlorine	2 (diatomic)
	Ozone	3 (triatomic)
	Phosphorus	4 (tetra-atomic)
Metals	Iron	1 (monoatomic)
	Copper	1 (monoatomic)
	Silver	1 (monoatomic)

Table 1 - Atomicity of some common elements

Atomic radii: It's is a size of an element i.e. distance from the nucleus to the outermost shell of an atom. It is measured in nanometres (nm).

$1nm = \frac{1}{10^9}$ meter

Table 2 – Atomic radii of some common elements

Element		Atomic radius	
Hydrogen		0.037nm	
Carbon		0.077nm	
Oxygen		0.073nm	
Sulphur	E/7	0.104nm	
Nitrogen	्याम्त	0.074nm	(6)

Atomic Mass

It is the average relative mass of an atom of an element as compared to the mass of an atom of carbon (C-12 isotope) taken as 12 (u).

Atomic mass= $\frac{Mass of 1 atom of an element}{1/12 of the mass of an atom of C-12}$

Atomic Mass Unit (amu)

The atomic mass unit has been defined as 1/12 (one twelfth) the mass of carbon-12 atom taken as 1 u.

Nowadays, the atomic mass unit which was abbreviated as **amu**, is written as "u" (unified mass), according to the IUPAC(International union of Pure and Applied Chemistry).

Thus, 1u=1/12 the mass of carbon-12

Table 3 – atomic masses of some common elements		
Element	Atomic mass(u)	
Hydrogen		
Carbon	12	
Oxygen	16	
Nitrogen	14	
Chlorine	35.5	

Gram Atomic Mass: The atomic mass of an element expressed in grams is known as gram atomic mass.

For example:

The atomic mass of oxygen (O) = 16u

Therefore, gram atomic mass of oxygen (O) = 16g

DF EDUCATION (S)

The PREAD (TOOM)

f Manipur