

CHAPTER - 1 BINARY OPERATIONS

NOTES

Binary Operation

Let A be any non- empty set. Then, a function $*: A \times A \rightarrow A$ is called a binary operation or binary composition or an internal composition on the set A.

External Binary operation

Let A and S be any non- empty sets. Then, a function *: $A \times S \rightarrow S$ is called an external binary operation on S over A.

Algebraic Structure

A set equipped with one or more binary operations (internal or external) is known as an algebraic structure.

Note: Let * be any operation on a non-empty set A, then * is called binary operation on A, if $a * b \in A$, for every $a, b \in A$. It is called **closure law** and we say that 'A is closed with respect to* or " A satisfies closure law with respect to *.

Associativity and Commutativity

Let * be a binary operation on a non-empty set A, then.

- * is called **commutative**, if a*b=b*a, for every $a,b \in A$. (i)
- (ii) * is called **associative**, if (a*b)*c = a*(b*c), for every $a,b,c \in A$.

Identity Element

For an algebraic structure (A, *), an element $e \in A$ (if it exists) is called an **identity element**, if a*e=e*a=a, for every $a \in A$. CATION (S)

Inverse of an Element

Let * be a binary operation on a non-empty set A and let $e \in A$ be the identity element of * on A. Then, an element $a \in A$ is called **invertible** (or inversible), if there exists an element $b \in A$ such that a * b = b * a = e. The element b is called the inverse of a and it Governme denoted as a^{-1} .

Distributivity

Let * and \circ be two binary operations on a set A. Then , * is distributive over \circ , if $a*(b \circ c) = (a*b) \circ (a*c)$ (left distributive law) and $(b \circ c)*a = (b*a) \circ (c*a)$, (right distributive law) for every $a, b, c \in A$.

Theorem: The identity element for an algebraic structure, if it exists, is unique.

Theorem: If (A, *) is an algebraic structure with identity, in which the binary operation * is associative, then the inverse of an element of A, if it exists, is unique.

Theorem: Let (A, *) is an algebraic structure with identity, in which the binary operation * is associative. If a and b are two invertible elements of A, then a*b is also invertible and $(a*b)^{-1} = b^{-1}*a^{-1}$.

Subsets closed under a binary operation

Definition: Let * be a binary operation on a set A and H be a subset of A. Then, H is said to be closed under *, if for every pair $(a,b) \in H \times H \Rightarrow a*b \in H$.

Composition Table (or Operation Table)

Let A be a non-empty set and let * be an operation on A. Then , we can completely describe the operation with the help of a table called *composition table* (or *operation table*). Let $A = \{a_1, a_2, ..., a_n\}$ be a finite set and * be an operation on A. Then we can construct composition table as given below:

*	a_1	a_2	a_i		a_n	
a_1	$a_{1} * a_{1}$	$a_1 * a_2$	$a_1 * a_i$		$a_1 * a_n$	
a_2	$a_2 * a_1$	$a_{2} * a_{2}$	$a_2 * a_i$	 /	$a_2 * a_n$	
	.6		. \	/. /	36 /	
	X			7		
a_{i}	$a_i * a_1$	$a_i * a_2$	 $a_i * a_i$	636	$a_i * a_n$	
•		. 6/2	 तम	۷		
•					•	5 (S)
•	•			-00TE	(A.O.)	ATION (S)
a_n	$a_n * a_1$	$a_n * a_2$	 $a_n * a_i$	1 Parisi	$a_n * a_n$	

- The elements of the left-most column are called heads of the corresponding rows.
- The elements of the top-most row are called heads of the corresponding columns. We can infer the following result from the composition table:
 - (i) * is a binary operation if all the entries of the table belong to the set A.
 - (ii) * is commutative if the composition table is symmetric about the diagonal joining the upper left corner and the lower right corner.

- (iii) An element $e \in A$ is the identity element if the row headed by e coincides with the top-most row and the column headed by e coincides with the left-most column.
- (iv) Let $e \in A$ be the identity element. If e appears in the entry of the table (not on the top-most row and the left-most column), then the heads of that particular row and column are **invertible** and are inverses of each other.

Some Special Operations

1. Addition modulo n

Let n be a positive integer, we define the operation 'addition modulo n' denoted by ' $+_n$ ' as follows:

 $a +_n b$ = the least non-negative remainder when a + b is divided by n; $a, b \in Z$

For example,

 $2 +_6 5$ = the least non-negative remainder when 2 + 5 *i. e.* 7 is divided by 6 = 1

2. Multiplication modulo *n*

Let n be a positive integer, we define the operation 'multiplication modulo n' denoted by ' \times_n ' as follows:

 $a \times_n b$ = the least non-negative remainder when $a \times b$ is divided by n; $a, b \in Z$.

For example,

 $2 \times_6 5$ = the least non-negative remainder when 2×5 *i. e.* 10 is divided by

=4

