

CHAPTER-7

CONGRUENCE OF TRIANGLES.

SOLUTIONS:

EXERCISE 7.1

- 1. Complete the following statements:
 - Soln: (a) Two line segments are congruent if they have the same length.
 - (b) Among two congruent angles, one has a measure of 70°, the measure of the other angle is also 70°.
 - (c) When we write LA = LB, we actually mean measure of LA is equal to the measures of LB.
- 2. Give any two real life examples for congruent shapes.

Ans: I) Two mathematical text book of class (VII) .

II) Two 800 Maruti cars.

3.Soln:

All the corresponding congruent when \bigwedge ABC \cong \bigwedge FED are:

- (i) $LA \longleftrightarrow LF$
- (ii) $LB \longleftrightarrow LE$
- (iii) $LC \longleftrightarrow LD$

4. IF \triangle DEF \cong \triangle BCA, write the part of \triangle BCA that correspond to

- (i) $LE \longleftrightarrow LC$
- (ii) $\overline{\mathsf{EF}} \longleftrightarrow \overline{\mathsf{CA}}$
- (iii) LF ← → LA
- (iv) $\overline{DF} \longleftrightarrow \overline{BA}$

EXERCISE 7.2

1. Which congruence criterion do you use in the following?

(a) Soln: From the figure given in the text book we see the three corresponding sides of the two triangles

AC=DF, AB=DE & BC=EF

So, \triangle ABC $\cong \triangle$ DEF by <u>SSS</u> congruence criterion.

- (b) Soln: From the two triangles, we see that two sides and one corresponding angle are equal, then by <u>SAS</u> congruence criterion \triangle PQR \cong \triangle XYZ.
- (c) Soln: Here, two corresponding angles and a side of two triangles are equal then \triangle LMN $\triangle\cong$ GFH by <u>ASA</u> Congruence criterion.
- (d) Soln: Here, two corresponding angles of two triangles are equal and one angle of 90° is also equal then the two
 △triangles △ ABE ≅ CDB by RHS Congruence Criterion.
- 2. You want to show that $\triangle ART \cong \triangle PEN$

(a)Soln: i) AR=PE

ii) RT = EN & iii) AT = PN

(b)soln:

i) RT = EN & ii) PN = AT

(c) soln:

- (i) LART = L PEN
- (ii) LRTA = LENP.
- 3. Soln: Here, \triangle AMP \cong \triangle AMQ Then,

STEPS	REASONS
(i) PM=QM	(i) Given in the figure.
(ii) LPMA = LQMA	(ii) Given in the figure.
(iii) AM=AM	(iii) Common sides of the two
	triangle.
(iv) △AMP ≅ △ AMQ	(iv) By SAS.

- 4. Soln: No, the student not justified because AAA congruence criterion does not exist in the congruence condition.
- 5. Soln: From the figure of the two triangles AR=WO, AT=NO & LRAT =LNOW

 Therefore \triangle ART \cong \triangle NOW.

6. Soln: Complete the congruence statement.

 \triangle BCA \cong \triangle BTA, By SAS.

 \triangle QRS \cong \triangle TPQ, By SAS.

7. In a squared sheet, draw two triangles of equal area such that Soln: The two triangles are congruent. The perimeter are sum of all sides of the two triangles.

9. Soln: Here $LB = LQ [90^{\circ}]$

LBCA =LPRQ [Given]

AC=PR

Then, \triangle ABC \cong \triangle PQR by ASA.

10. Soln: Here, *LB=LE* [90°]

LBAC = LEFD.

BC=DE

Therefore, \triangle ABC \cong DEF by RHS Congruence Criterion.

JUCATION (S)