

CHAPTER-5

TOPIC: LINES AND ANGLES

NOTES:

LINE: A line has a sense of length but has neither breadth nor thickness. It has no end points.

LINE SEGMENT: A line segment is a part of a line with two end points . PQ is the line segment.

RAY : A portion of a line extended in one direction from a fixed point is called a ray . Here \overrightarrow{OP} is the ray.

ANGLE: An angle is formed by two rays with a common initial point called the vertex and the rays forming an angle are called arms or sides of an angle.

TYPES OF ANGLES:

(i) **Acute Angle**: An angle whose measure is greater than 0° but less than 90° is called an acute angle.

DUCATION (S)

(ii) **Right Angle**: An angle whose measure is 90° is called right angle.

(iii) **Obtuse Angle**: An angle whose measure is greater than 90° but less than 180° is called an Obtuse angle.

RELATED ANGLES:

Complementary Angles: When the sum of the measures of two angles is 90°, then it is called **complementary angles**.

Supplementary Angles: When the sum of the measures of two angles is 180° then it is called **supplementary angles**

THINK, DISCUSS AND WRITE:

1. Can two acute angles be complement to each other?

Ans: Yes, two acute angles complement as under:

$(i)45^0, 45^0$	$(ii)50^040^0$	$(iii)40^{0},50^{0}$
$(iv)60^{0},30^{0}$	$(v)30^0,60^0$	(vi)70 ⁰ ,20 ⁰
$(vii)20^0,70^0$	$(viii)80^0,10^0$	$(ix)10^0,80^0$

2. Can two obtuse angles be complement to each other?

Ans: No, two obtuse angles cannot be complement because their sum is greater than 90° .

3. Can two right angles be complement to each other?

Ans: No, two right angles cannot be complement to each other because their sum is greater than 90° .

1. Which pair of the following angles are complementary?

Ans:

(i)	$70^0 + 20^0 = 90^0$	Yes, the pair is complementary.
(ii)	$75^{0} + 25^{0} = 100^{0}$	It is not complementary.
(iii)	$48^{0}+52^{0}=100^{0}$	It is not complementary.
(iv)	$35^{0}+55^{0}=90^{0}$	Yes, the pair is complementary.

2. What is the measure of the complement of each of the following angles?

Ans: Let x be the complement of the given angle, then..

(i).
$$45^0$$

$$45^0 + x^0 = 90^0$$

$$x^0 = 90^0 - 45^0$$

$$^{-}45^{0}$$
.

Soln:
$$65^0 + x^0 = 90^0$$

$$x^0 = 90^0 - 65^0$$

$$=25^{\circ}$$
.

Soln:
$$41^0 + x^0 = 90^0$$

$$x^0 = 90^0 - 41^0$$

$$^{-}49^{0}$$
.

Soln:
$$54^0 + x^0 = 90^0$$

$$x^0 = 90^0 - 54^0$$

$$= 36^{\circ}$$
.

THINK, DISCUSS AND WRITE:

1. Can two obtuse angles be supplementary?

Ans: No, it does not happen so, because 90° obtuse angle $< 180^{\circ}$.

2. Can two acute angles can be supplementary?

Ans: No, it does not happen because 0° < acute angle < 90° .

3. Can two right angles be supplementary?

Ans: Yes, the sum of two right angles is supplementary

i.e.
$$90^0 + 90^0 = 180^0$$
.

TRY THESE:

1. Find the pairs of supplementary angles in fig 5.7:

(i).
$$110^0 + 50^0 = 160^0$$
, it is not supplementary.

(ii).
$$105^0 + 65^0 = 170^0$$
, it is not supplementary.

(iii).
$$50^0 + 130^0 = 180^0$$
 it is supplementary.

(iv).
$$45^0 + 45^0 = 90^0$$
, it is not supplementary.

2. What will be the measure of the supplementary of each of the following angles?

Ans: Let x^0 be the one of the supplementary angles

(i)
$$100^{0} + x^{0} = 180^{0}$$

 $\Rightarrow x^{0} = 180^{0} - 100^{0}$
 $\Rightarrow x^{0} = 80^{0}$

(ii)
$$90^{0} + x^{0} = 180^{0}$$

 $\Rightarrow x^{0} = 180^{0} - 90^{0}$
 $\Rightarrow x^{0} = 90^{0}$

(iii)
$$55^{0} + x^{0} = 180^{0}$$

 $\Rightarrow x^{0} = 180^{0} - 55^{0}$
 $\Rightarrow x^{0} = 125^{0}$

(iv)
$$125^{0} + x^{0} = 180^{0}$$

 $\Rightarrow x^{0} = 180^{0} - 125^{0}$
 $\Rightarrow x^{0} = 55^{0}$

OF EDUCATION (S)

ADJACENT ANGLES: Two angles are said to be adjacent if

- (I)They have a common vertex.
- (II)They have a common arm &
- The non common arm are on either side of the common arm or (III)they do not overlap.

From the above figure, O is the common vertex OB is the common arm and OA & OC are non – common arms LP &LQ are adjacent angles.

TRY THESE:

- 1. Are the angles marked 1 and 2 adjacent? If they are not adjacent, say "why"?
 - (i). Ans : *L*1 & *L*2 are adjacent .
 - (ii). L1 & L2 are adjacent.
 - (iii). L1 & L2 are not adjacent, because they do not have the common vertex.
- 2. In the given Fig 5.10 are the following adjacent angles?
 - (a) Ans: LAOB and LBOC are adjacent angles because they have common vertex and common arm.
 - (b) Ans: LBOD and LBOC are not adjacent because OC and OP are not on opposite side of OB.

THINK, DISCUSS, AND WRITE:

1. Can two adjacent angles be supplementary?

Ans: Yes, two adjacent angles be supplementary.

2. Can two adjacent angles be complementary?

Ans: Yes, two adjacent angle be complementary.

3. Can two obtuse angle be adjacent angle?

Ans: Yes, two obtuse angle be adjacent angles because of the fact that their sum is less than 360° .

4. Can an acute angle be adjacent to an obtuse angle?

Ans: Yes, an acute angle be adjacent to an obtuse angle.

LINEAR PAIR OF ANGLES:

Two adjacent angles are said to form a linear pair of angles if their non- common arms are two opposite rays.

[NOTE: Linear Pair of angles are always supplementary.]

LP &LQ are linear pair

i.e.
$$LP + LQ = 180^{\circ}$$
.

THINK, DISCUSS AND WRITE:

1. Can two acute angles form a linear pair?

Ans: No, two acute angles cannot form a linear pair because an acute angles is less than 90° and their sum cannot reach 180° .

Ans: No, it cannot happen because their sum will be more than 180° .

3. Can two right angles form a linear pair?

Ans: Yes, two right angles can form a linear pair because their sum is 180° .

TRY THESE:

Check which of the following pair of angles form a linear pair because the sum of two angles is

Ans: (i) & (ii) are the pair angles form a linear pair because the sum of two angles is 180° .

i.e. (i).
$$40^0 + 140^0 = 180^0$$

ii).
$$65^0 + 115^0 = 180^0$$
.

VERTICALLY OPPOSITE ANGLES:

When two lines are intersect at a point then vertically opposite angles so formed are equal.

Here, L1 and L3

L2 and L4 are vertically opposite angles, then

L1 = L3 &

L2 = L4.