

Chapter 14

Symmetry

SOLUTIONS:

Exercise 14.1

Q1. Copy the figures with punched holes and find the axes of symmetry for the following :

Q2. Given the line of symmetry find the other hole :

Ans :

Q3. Complete each figure performing reflection in the dotted mirror line . are you able to recall the name of the figure you complete .

Q4. Identify multiple lines of symmetry if any in each of the following figures:

Q5. Copy the figure given here .

Take any one diagonal as a line of symmetry and shade a few more squares to make the figure symmetric about a diagonal. Is there more than one way to do that? Will the figure be symmetric about both the diagonals?

Ans:

The figure is symmetric about both the diagonals.

Q6. Copy the diagram and complete each shape to be symmetric about the mirror line .

Ans:

- Q7. State the number of lines of symmetry for the following figures :
- (a) An Equilateral Triangle . Ans : 3
- (c) A scalene triangle. Ans : 0
- (e) A rectangle. Ans : 2
- (g) A parallelogram. Ans: 0
- (i) A regular hexagon. Ans: 6

- (b) An Isosceles triangle. Ans : 1
- (d) A square. Ans: 4
- (f) A rhombus. Ans :2
- (h) A quadrilateral. Ans: 0
- (j) A circle. Ans : infinite.

Q8. What letters of the English alphabet have reflectional symmetry about.

(a) a vertical mirror. Ans: A, H, I, M, O, T, U, V, W, X, Y

(b) a horizontal mirror. Ans : B , C , D , E , H , I , K , O , X

(c) Both horizontal and vertical mirrors. Ans: H, I, O, X

Q9. Give three examples of shapes with no lines of symmetry.

Ans : They are scalene triangle, letter R and quadrilateral with unequal sides in length.

Q10. What other name can you give to the line of symmetry of (a) an isosceles triangle, (b) a circle.

Exercise 14.2

Q1. Which of the following figures have rotational symmetry of order more than 1: Ans: (a), (b), (d), (e) and (f)

Q2. Give the order of rotational symmetry for each figure :

(d) Ans: 4 (a) Ans :2 (b) Ans : 2 (c) Ans : 3 (e) Ans: 4

(f) Ans: 5 (g) Ans : 6 (h) Ans: 3

How we find the order (a) 360⁰ 90⁰ rotation 180⁰rotation 270⁰

...etry. We will rotate these angular positions and count how many times it show symmetry. Here it is two times so the order is 2.

Governm

Exercise 14.3

Q1. Name two figures that have both line symmetry and rotational symmetry.

Ans : square , triangle.

Q2. Draw

(i) a triangle with both line and rotational symmetry of order more than 1.

Ans :

An equilateral triangle has both line and rotational symmetry more than 1.

(ii) a triangle with only line symmetry and no rotational symmetry of order more than 1.

Ans :

DUCATION (S)

An isosceles triangle has 1 line symmetry and rotational symmetry of order 1.

(iii) A quadrilateral with rotational symmetry of order more than 1 but not a line symmetry.

Ans :

No line symmetry but rotational symmetry of order 2

(iv) a quadrilateral with line symmetry but not a rotational symmetry of order more than 1.

Ans :

A quadrilateral with line symmetry but no rotational symmetry more than 1.

Q3 If a figure has two or more lines of symmetry , should it have rotational symmetry of order more than 1 ?

Ans : yes

Q4. Fill up the blanks :

Ans :

Shape	Centre of rotation	Order of	Angle of rotation
		rotation	
Square	Intersecting point of diagonals	4	90 ⁰
Rectangle	Intersecting point of diagonals	2	180 ⁰
Rhombus	Intersecting point of diagonals	2	180 ⁰
Equilateral triangle	Intersecting point of medians	3	120 ⁰
Regular hexagon	Intersecting point of diagonals	6	60°
Circle	centre	infinite	Any angle
Semi circle	centre	At OF	90 ⁰
STATION BINEN AND MANIPUT			

Q5. Name the quadrilateral which both line and rotational symmetry of order more than 1.

Ans : square

Q6. After rotating by 60^0 about a centre a figure looks exactly the same as its original position. At what other angles will this happen for the figure ?

Ans : 120° , 180° , 240° , 300° , 360°

Q7. Can we have a rotational symmetry of order more than 1 whose angle of rotation is (i) 45^0 (ii) 17^0

Ans : 45° may be rotational angle but 17° cannot be.

