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CHAPTER-1

BINARY OPERATIONS

1.1 Introduction

Many interesting characteristics of the number system are associated with the four
fundamental operations of addition, subtraction, multiplication and division. Let us investigate
what such an operation does in the number system. Take the case of addition in the system
of real numbers. Although we are quite familiar with the process of addition, still it is not
easy to give a formal definition of addition of real numbers. You know that any two given
real numbers can be added together. In other words, there is no pair of real numbers
that cannot be added together. Also for any two real numbers, the sum (the result of
adding together the numbers) is again a real number. So, given any two real numbers
say, x and y, we get on adding, another real number x+y. Thus, addition can be looked
upon as a rule of forming a real number x+y corresponding to a given pair (x, y) of
real numbers. The other three operations may also be treated similarly. Only in the case
of division, the given pair of numbers (x, y) should be such that 0y  (to avoid division
by zero). Generalising the idea of these four fundamental operations, we shall develop in
this chapter, the concept of binary operations on arbitrary sets and discuss their
classification according to the properties they possess.

1.2 Binary Operation on a set

Definition 1.1  Let S be a non-empty set and ‘o’ be a mapping of the cartesian
product S×S to S. Then ‘o’ is called a binary operation or binary composition or an
internal composition on the set S.

Thus, a binary operation o on the set S, assigns to each ordered pair (x, y) S×S a
uniquely determined element say, zS. We denote the o-image of (x, y) i.e. the element
z by xoy and call it the composite (or product) of x and y under o.
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As examples, we can define binary operations o and * on the set Z of integers by

xoy = x+y

and x*y = xy;   x, yZ

These binary operations are nothing but the usual addition and multiplication of
integers.

According to the definition, division is not a binary operation on Z for division does
not assign any integer to the ordered pair of integers (2, 3) or (3, 0). Again the
impossibility of division by zero restricts division from being a binary operation on R also.
However if we exclude zero from the set of real numbers, then division becomes a binary
operation on the resulting set R* of all non-zero real numbers, in as much as the quotient
of a non-zero real number by a non-zero real number is a non-zero real number.

We can define several mappings from a given set to another. Likewise we can define
several binary operations on a given set. For instance, on the infinite set R of real numbers,
infinite number of binary operations may be defined.

An example of binary operation free from usual addition, multiplication etc. is that
of set intersection or union.

Let P(S) be the set of all subsets of a given set S. Then the maps BAB)(A, 
and BAB)(A,   where A, B are subsets of S, are binary operations on P(S), for the
intersection or union of any two subsets of S is again a subset of S.

Definition 1.2 Let A and S be non-empty sets and SSA: f  be a mapping.
Then f is called an external binary operation on S over A.

Thus, an external binary operation f on S over A assigns to each ordered pair
SA),( xa  a uniquely determined element say, S.),(  xafy  Here, f(a,x) is denoted

multiplicatively as ax.

Multiplication of a vector by a scalar is an example of external binary operation on
the set of vectors over the set of scalars.

Note : Henceforth ‘‘binary operation’’ will mean as defined in definition 1.1 and the word
external will be specifically mentioned while considering the case of external binary
operation.

Definition 1.3  A set equipped with one or more binary operations (external or
internal) is known as an algebraic structure.

If o is a binary operation on a set S, then the pair (S, o) is an algebraic structure.

Higher Mathematics for Class – X
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1.3 Associativity and Commutativity

Definition 1.4  A binary operation o on a set S is said to be associative if  (xoy)oz
= xo(yoz) for every x, y, zS.

Definition 1.5  A binary operation o on a set S is said to be commutative if
xoy=yox for every x,yS.

The usual addition and multiplication on the set Z of integers are associative as well
as commutative for

(a+b)+c = a+(b+c), (ab)c=a(bc) for all a, b, cZ,

and  a+b=b+a, ab=ba for all a, bZ.

Similarly, the usual addition and multiplication on Q (or R) are also associative as
well as commutative. Subtraction on Z (or Q or R) is a binary operation which is neither
associative nor commutative.

In fact, if a, b, cZ, then

cbacba  )()(  whenever 0c

and abba           whenever  .ba 

Example 1.  Let * be the binary operation defined on the set Q of rational numbers by
x*y = x+y–xy; x,yQ. Show that * is associative as well as commutative.

Solution : Let x, y, zQ. Then

(x*y)*z = (x+y–xy)* z

= a*z        where  a=x+y–xy

= a+z–az

= (x+y–xy)+z–(x+y–xy)z

= x+y–xy+z–zx–yz+xyz

= x+y+z–xy–yz–zx+xyz

          and x*(y*z) = x*(y+z–yz)

= x+(y+z–yz)–x(y+z–yz)

= x+y+z–yz–xy–zx+xyz

= x+y+z–xy–yz–zx+xyz

         Hence (x*y)*z = x*(y*z)  for all x, y, zQ and accordingly * is associative.

Binary Operations



4 Higher Mathematics for Class – X

Again, x*y = x+y–xy

    = y+x–yx

             = y*x   for all x, yQ

Hence * is commutative as well.

Example 2.  Show that the binary operation o defined on Z by

xoy=x+2y;  x,yZ is neither associative nor commutative.

Solution :   For o to be associative we should have

    (xoy)oz = xo(yoz), for every x,y,zZ.

             Now,  LHS = (x+2y)oz

    = x+2y+2z

             And   RHS = xo(y+2z)

    = x+2(y+2z)

    = x+2y+4z

Taking the particular case where x=y=z=1, we have

   LHS = 1+2+2=5 and RHS = 1+2+4=7

Thus, 1o(1o1)   (1o1)o1 and hence o is not associative.

In order that o is commutative, we should have

xoy=yox, for all x,yZ.

But yxyx 2o   and xyxy 2o   so that when 1,0  yx ,

we have  .o12o xyyx   Hence o is not commutative.

1.3.1 Generalised product under an Associative Binary Operation

Let o be an associative binary operation on a set S. Then we can define inductively,
the composite or product of any n elements S,.......,, 21 nxxx  under o as follows :

321321 o)o(oo xxxxxx 

43214321 o)oo(ooo xxxxxxxx 

...........        ...........

nnn xxxxxxx o)o......oo(o.........oo 12121 

By making repeated use of associativity, one can see that in the product
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nxxx o........oo 21  the factors may be grouped in any manner without altering the value of
the product so long as the order of the elements is unchanged. Besides being associative,
if o is commutative also, then the order of the factors may also be changed randomly
without altering the value of the product.

1.3.2 Power of an Element relative to an Associative Binary
Operation

Let o be an associative binary operation on a set S. Then for any x S, and for
any ,Nn  the nth power of x denoted by xn is defined by

xxxxn o.......oo (n factors each equal to x)

It can be easily proved that
nmnm xxx o for all .N, nm

In case the associative binary operation is denoted additively, the nth multiple
(additive power) of x denoted by nx is defined by xxxnx  ...........  (n terms).

In this case also we can easily prove that

,)( xnmnxmx  for all .N, nm

1.4 Distributivity

Definition 1.6  Let * and o be two binary operations on a set S. Then we say
that * is distributive over o, if

x*(yoz) = (x*y)o(x*z) ......................... (i)

and (yoz)*x = (y*x)o(z*x) ........................ (ii)

for all ,, zyx S.

Thus, distributivity is a relation that exists between two binary operations. The
conditions (i) and (ii) are known as left distributive law and right distributive law respectively
and the two together are referred to as distributive law. If * is commutative, the two
conditions are identical.

In the set of real numbers, multiplication is distributive over addition and also over
subtraction, but addition is not distributive over multiplication. In the power set P(S) of a
set S, the binary operation of union distributes over intersection and vice-versa i.e.

C)(AB)(AC)(BA  

and  C),(AB)(AC)(BA    for all P(S)CB,A,  .

Example 3. Two binary operations, addition and multiplication are defined on the
set N×N as follows :
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),(),(),( dbcadcba 

and ),(),(),( bcadbdacdcba 

Prove that the multiplication distributes over the addition.

Solution : We are to prove that for all N,,,,,, fedcba

),(),(),(),()],(),[(),( febadcbafedcba 

Now, LHS = ),(),( fdecba 

 )()(),()( ecbfdafdbeca 

),( bebcafadbfbdaeac 

and RHS ),(),( beafbfaebcadbdac 

),( beafbcadbfaebdac 

),( bebcafadbfbdaeac 

 LHS=RHS

Hence the result.

1.5 Subsets closed under a Binary Operation

Definition 1.7  Let o be a binary operation on a set S and H be a subset of S.
Then H is said to be closed under o, if for every pair (a,b) of elements H, ba , the
composite aob is also an element of H i.e. if (a,b) H.HH  aob

For example, consider the binary operation of addition on the set R of all real
numbers. As a subset of R, the set Q of all rational numbers is closed under addition for
the sum of any two rational numbers is again a rational number. However, the set Qc of
all irrational numbers is not closed under addition for the sum of two irrational numbers
needs not be an irrational number. For instance, 32  and 32  are irrational numbers
whereas their sum 4 is not an irrational number.

Note : For the algebraic structure (S,o), if H is a subset of S closed under o, then
o is a binary operation on H also i.e. (H,o) is also an algebraic structure.

Example 4. Show that the set H={1,o,–1} is closed under multiplication but not
under addition.

Solution : Here, H×H={(1,1), (1, 0), (1,–1), (0, 1), (0,0), (0, –1), (–1, 1), (–1, 0),
(–1,–1)}

For each ordered pair H,H),( ba  we see that the product ab is 1 or
0 or –1. This means that Hab  whenever H.H),( ba  Hence H is
closed under multiplication.
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For H to be closed under addition, we should have H ba

whenever HH),( ba . However, HH)1,1(   and H.211 

Hence, H is not closed under addition.

Example 5. Let S = {0,1,2,3,4,5} and ‘+
6
’ be defined by

,6 cba       S, ba

where c is the remainder when a+b is divided by 6. Prove that +
6
 is a

binary operation on S and that the subset H={0,2,4} of S is closed under
+

6
.

Solution : When any integer is divided by 6, the remainder will be one of the six
numbers 0, 1, 2, 3, 4, 5. So, for any two integers a and b, if a+b is
divided by 6, the remainder will be a member of the given set S.
Consequently S6  cba  whenever SS),( ba  and therefore +

6
 is

a binary operation on S.

Again, H×H= {(0,0), (0,2), (0,4), (2,0), (2,2), (2,4), (4,0), (4,2), (4,4)}

And 0+
6
0=0 2+

6
0=2 4+

6
0=4

0+
6
2=2 2+

6
2=4 4+

6
2=0

0+
6
4=4 2+

6
4=0 4+

6
4=2

Thus, a+
6
bH for any (a, b)H×H. Hence H is closed under +

6
.

Remark : The binary operation ‘+
6
’ is known as ‘‘addition modulo 6’’.

Let (S,o) be an algebraic structure and H be a finite subset of S. To
examine whether H is closed under o or not, a short cut method may be
adopted by forming what is called the composition table. The method is

illustrated in the following example.

Example 6. A binary operation ×
5
 (multiplication modulo 5) is defined on the set

W of whole numbers by

W,;5  bacba

where c is the remainder when ab is divided by 5.

Show that H={1, 2, 3, 4} is closed under this binary operation.

Solution : We can exhibit all possible multiplications in the form of the composition
table shown below :
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×
5

1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

[Here, the composite of an entry in the first column (left of the vertical line) and an
entry in the first row (above the horizontal line) is entered at the intersection of the
corresponding row and column. For instance, the composite of 2 in the first column and
3 in the first row is 1, the second row (in which 2 occurs) third column (in which 3
occurs) entry inside the lines.]

Since each entry in the above table is a member of H, therefore H is closed under
the binary composition.

1.6 Identity Element

An algebraic structure (S,o) is said to be with identity element if there exists Se
such that ,oo xxeex   for every S.x

For the algebraic structure (Z,+), 0(zero) is the identity element since
aaa  00  for every .Za  And for (Q,.), 1 is the identity element since

,.11. xxx  for every Qx .

Again consider the algebraic structure (N,+) where N is the set of all natural numbers.
There is no identity element for this structure as .N0  Thus, identity element may or
may not exist in a given algebraic structure.

Theorem 1.1 The identity element for an algebraic structure, if it exists, is unique.

Proof : Let (S,o) be an algebraic structure. Let if possible, e
1
 and e

2
 be identity

elements in S. Then

,o 121 eee  since e
2
 is an identity element,

and ,o 221 eee  since e
1
 is an identity element.

But 21oee  is uniquely determined as the composite of e
1
 and e

2 
and so .21 ee 

Hence the theorem.

1.7 Inverse of an Element

Let (S,o) be an algebraic structure with identity element e and let x be an element

of S. An element Sy  if it exists, is said to be an inverse of x if .oo exyyx 
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Usually, inverse of x is denoted by x–1 and is specified by .oo 11 exxxx    And
any two elements x and y in S are inverse of each other if and only if .oo exyyx   It
follows that the identity element e is the inverse of itself as eoe=e.

In (Z,+), every element has an inverse. In fact for Za , –a is the inverse since

,0)()(  aaaa  the identity element. And in (R,.), every non-zero element x has

an inverse .R1 
x

Theorem 1.2  If (S,o) is an algebraic structure with identity, in which the binary
operation o is associative, then the inverse of an element of S if it exists, is unique.

Proof :  Suppose y and y' are inverses of the same element S.x

Then, exyyx  oo

and xoy' = y'ox=e

where Se  is the identity element.

Now, (yox)oy' = eoy'=y' .......... (i)

and yo(xoy') = yoe= y ........... (ii)

Since o is associative,

(yox)oy' = yo(xoy')

 y'=y     (from (i) and (ii)).

This proves the theorem.

In an algebraic structure with identity, an element is said to be invertible
if its inverse exists.

Theorem 1.3  Let (S,o) be an algebraic structure with identity, in which o is
associative. If x and y are two invertible elements of S, then xoy is also invertible and
(xoy)–1 = y–1ox–1.

Proof : Let e be the identity element in S.

Then, exxxx   oo 11

and yoy–1 = y–1oy=e

Now, (xoy) o (y–1ox–1) = xo (yoy–1)ox–1  (by associativity)
1o)o(  xex

1o  xx

= e
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and )o(o)o( 11 yxxy  = yxxy o)o(o 11 

= y–1o(eoy)

= y–1oy

= e

Thus, (xoy)o (y–1ox–1) = (y–1ox–1)o (xoy)=e

Hence xoy and y–1ox–1 are inverse of each other.

 111 o)o(   xyyx

This proves the theorem.

Example 7.  A binary operation o is defined on Q by ;
5

o
xy

yx   Q., yx

Find the identity element and the inverse of 
3
2

 if they exist.

Solution : Let e denote the identity element. Then for any Qx

eox=xoe=x

 xxe 
5

 Q5e

Thus, the identity element is 5.

Again, let a be the inverse of 
3
2

. Then

5
3
2o a (the identity element)

 5
5

3
2


a

 25
3

2 a

 Q
2
75a

Thus, the inverse of 
3
2

 is 
2

75
.

Example 8. If S is a non-empty set, find the identity element (if it exists) for the
algebraic structure (P(S), ). Also examine whether B–1 exists or not for
any subset B of S.
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Solution : Let E denote the identity element. Then for any P(S)A

i.e. for any subset A of S, AAE  .

But this relation holds for arbitrary subset A if and only if E is the empty
set. So, E  is the identity element in P(S).

Again,  BB 1 

 1B  and B

Thus, B–1 exists if and only if B .

EXERCISE 1.1

1. If E is the set of all even natural numbers and F, the set of all odd natural numbers,
answer the following :

(a) Is addition a binary operation on F ?

(b) Is multiplication a binary operation on F ? If yes, find whether identity element
exists or not.

(c) Is addition a binary operation on E ? If yes, find whether identity element exists
or not.

(d) Is multiplication a binary operation on E ? If yes, find whether identity element
exists or not.

2. State whether each of the following definitions of * gives a binary operation on N or
not. Give justification of your answer :

(i) a * b = a – b

(ii) a * b = |a – b|

(iii) a * b = a2b

(iv) a * b = b

(v) a * b = a+ab

(vi) a * b = ab

(vii) a * b = ab–1

(viii) a * b = ab+1.
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3. Prove that the following binary operations on N are commutative but not
associative :

(i) a * b = 2a + 2b      )N,( ba

(ii) a * b = 2ab

(iii) a * b = (a–b)2

(iv) a * b = ab+1.

4. Show that the binary operation on N defined by a*b=b is associative but not
commutative.

5. Show that each of the following binary operation * on Q is neither associative nor
commutative :

(i) x * y = x – y + 1      )Q,( yx

(ii) x * y = 2x + 3y

(iii) x * y = x + xy

(iv) x * y = xy2.

6. Prove that the binary operation o on Z defined by aob = a+b–5 is associative as
well as commutative.

7. Prove that the binary operation * defined on Z by a*b = 3a+5b is neither associative
nor commutative. Also prove that the usual multiplication on Z distributes over *.

8. Let binary operations o and * on R be defined by

  xoy = 2x + 2y and x * y = x.

Show that o is commutative but not associative and * is associative but not
commutative. Also show that o distributes over *.

9. Prove that the binary operation o on N defined by aob= maximum of a and b is
associative and commutative. Find the identity element and invertible elements of (N,o).

10. Investigate the set of integers, the set of rational numbers and the set of irrational
numbers for closure under the following binary operations :

(i) addition (ii) subtraction (iii)  multiplication    (iv)  division.

11. Prove that there is no non-empty finite subset of N closed under addition.

12. Prove that the only non-empty finite subset of N closed under multiplication is {1}.
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13. Find whether the identity element exists or not for each of the following algebraic
structures :

(i)  (N,+) (ii)  (N, .) (iii)  (Z,+) (iv)  (Z, .)

(v)  (Q,+) (vi)  (Q, .) (vii)  (P(S),) (viii)  (P(S),)

(S is any set and P(S) is the power set of S).

14. Let S={1, 2, 3, 4, 5, 6, 7}. Find the identity element of the algebraic structure
)(P(S), . Also find the inverse of A={2,4,6}, if it exists.

15. Consider the binary operation * on Q defined by

                      x*y = x+y–xy.

Find the identity element of (Q, *). Also find x–1 for Q.x  For what value of x
does the inverse not exist ?

16. Form the composition table for the set S={1, 2, 3, 4, 5, 6} with respect to the
binary operation of multiplication modulo 7. Deduce that S is closed under the
operation. From the table, find the identity element and the inverse of each element
of S. Also calculate 26 in S.

17. Form the composition table for the set S={0, 1, 2, 3, 4, 5} with respect to the
binary operation of addition modulo 6. From the table, find the identity element and
the inverse of each element of S.

18. Let a binary operation * on N be defined by

  a*b= HCF of a and b.

Show by means of a composition table that the set H={1, 2, 3, 4, 5, 6} is closed
under *.

19. A binary operation o on N, is defined by

aob = LCM of a and b.

Form a composition table for the set H={1, 2, 3, 4, 5} with respect to o. State
whether H is closed under o or not.

20. Prove that the set S={3n:nZ} is closed under usual addition and multiplication.
Examine the algebraic structures (S,+) and (S,.) for existence of identity and invertible
elements.
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ANSWER

1. (a) No,     (b)  Yes, Identity element is 1 F)( .

(c)  Yes, Identity does not exist.  (d) Yes, Identity does not exist.

2. (i) No, for 1,2N but 1*2=1–2=–1N.

(ii) No, for 2N but 2*2=(2–2=0N.

(iii) Yes, for a*b=a2bN whenever a,bN.

(iv) Yes, for a*b=bN whenever a,bN.

(v) Yes,  a+abN whenever a,bN.

(vi) Yes,  abN whenever a,bN.

(vii) No,  1*1=1–1=0N.

(viii) Yes,  ab+1N whenever a,bN.

9. Identity =1, 1 is the only invertible element.

10. Z, Q are closed under addition, subtraction and maltiplication but not under division.
Qc is not closed under any of the compositions.

13. (i) Does not exist (ii)  Exists (1) (iii)   Exists (0) (iv)  Exists (1)

(v) Exists (0) (vi)  Exists (1) (vii)  Exists (S) (viii)  Exists ( ).

14. Identity = S,  A–1 does not exist.

15. Identity = 0,   ,
1

1




x
xx  x–1 does not exist when x=1.

16. ×
7

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

The identity element is 1. The inverses of 1, 2, 3, 4, 5, 6 are 1, 4, 5, 2, 3, 6
respectively.   26=1S.

Higher Mathematics for Class – X
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17. +
6

0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

The identity element is 0. The inverses of 0,1,2,3,4,5 are 0,5,4,3,2,1 respectively.

19. o 1 2 3 4 5

1 1 2 3 4 5

2 2 2 6 4 10

3 3 6 3 12 15

4 4 4 12 4 20

5 5 10 15 20 5

H is not closed under o for there are entries in the composition table which are not
members of H.

20. For (S,+), the identity is 0 and inverse of any element 3n is 3(–n) i.e. –3n.

For (S,.), the identity does not exist and hence inverse of any element does not exist.

––––––––––

Binary Operations
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CHAPTER 2

SEQUENCES, A.P., G.P. AND H.P.

2.1 Introduction

We have discussed something about sequences and arithmetic progression (A.P.) in
the Mathematics (general course) for class-X. In this chapter, we shall discuss  again
something more about these terms.  We shall also discuss about geometric progression
(G.P.), harmonic progression (H.P.) and find the sum of some important finite series.

2.2 Sequence

Recall that a sequence is an ordered set of real numbers a
1
, a

2
, a

3
, ..., a

n
, ... which

is formed according to some specific rule so that corresponding to any definite positive
integer n, there is a definite number a

n
. The numbers a

1
, a

2
, a

3
, ..., a

n 
,... are called

terms or elements or members of the sequence.

Consider the set of numbers ,
5
4,

4
3,

3
2,

2
1

 ..., which is obviously an ordered set. Now
let us see the relation between any particular element of the set and its position in the
set. For this set, we can write

11
1

2
1

1 
a

12
2

3
2

2 
a

13
3

4
3

3 
a

......................

Following the pattern, we see that

1


n
nan
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Thus, we see that the above set of numbers are formed according to the specific

rule a
n
 (nth element of the set) = 1n

n
. So, it is a sequence.

A sequence is said to be finite if the number of its elements is finite, otherwise it is

said to be infinite. A finite sequence a
1
, a

2
, a

3
, ..., a

k
, is denoted by k

nna 1}{   and an

infinite sequence a
1
, a

2
, a

3
, ..., a

n
, ... is denoted by 

1}{ nna  or simply by {a
n
}, where

a
n
 is the nth term of the sequence. By assigning to n, the values 1, 2, 3, ...... successively

in the formula for a
n
, we can determine the elements of the sequence {a

n
}. In general, if

the nth term of a particular sequence is known, then by assigning different natural numbers
to n, all the terms of the sequence, and hence the sequence may be determined.
Therefore, the nth term in any sequence is called the general term of the sequence.

Some examples of sequence are given below :

(a) Finite sequences

(i) 1, 2, 3, ..., 50 i.e. 50
1}{ nn

(ii) 12, 22, 32, ..., 102 i.e. 10
1

2}{ nn

(iii) 2, 4, 6, ..., 150 i.e. 75
1}2{ nn

(iv) 100
1,...,

4
1,

3
1,

2
1,1  i.e. 

100

1

)1(












 

n

n

n

(b) Infinite sequences

(i) 1, 3, 5, ..., 2n–1 ... i.e.  12 n

(ii) ,
2
1,

2
1,

2
1

32 ..., ,
2
1
n  ... i.e. 









n2
1

(iii) 1, ,
4
1

 ,
9
1

 ..., 2
1

n
 ... i.e. 









2
1
n

(iv) 1, –1, 1, –1, ..., i.e.  1)1(  n

Example 1.  Find the general term (i.e. the nth term) of each of the following sequences
:

(i)  ,
17
4,

10
3,

5
2,

2
1

 ...

(ii)  1, 3, 1, 3, 1, 3, ...

Sequence, A.P. G.P. and H.P.
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Solution : (i)  We have
11

1
2
1

21


a

12
2

5
2

22


a

13
3

10
3

23


a

14
4

17
4

24


a

........................
Following the pattern, the general term of the sequence is given by

12 


n
nan

(ii) We have 1
1 )1(2121 a

2
2 )1(2123 a

3
3 )1(2121 a

4
4 )1(2123 a

and so on.

Hence, the general term of the sequence is given by
n

na )1(2 
  

or  a
n
=

  1, if n is odd
      3, if n is even.

Example 2.  Find the first five terms of each of the following sequences :

(i)  








1

2

n
n

(ii)   n)2(1 

Solution : (i)  We have
1

2




n
nan

 2
1

11
12

1 


a

3
4

12
22

2 


a

4
9

13
32

3 


a

5
16

14
42

4 


a

6
25

15
52

5 


a

Hence, the first five terms of the given sequence are 5
16,

4
9,

3
4,

2
1

 and 6
25

.



Higher Mathematics for Class – X
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(ii) We have a
n
=1+(–2)n

           121)2(1 1
1 a

541)2(1 2
2 a

781)2(1 3
3 a

17161)2(1 4
4 a

31321)2(1 5
5 a

Hence, the first five terms of the given sequence are –1, 5, –7, 17 and –31.

Example 3.  Determine the sequence  20
1)3(  nnn .

Solution :  We have )3(  nnan

 4)31(11 a

10)32(22 a

18)33(33 a

28)34(44 a

.............................

.............................

460)320(2020 a

Hence, given sequence is 4, 10, 18, 28, ..., 460.

EXERCISE 2.1

1. Find the first five terms of each of the following sequences :

(i)  n)1(1  (ii)   1)1(  n (iii)  







2
13

n
n

(iv)  



 

n
n 12

(v)  32 n (vi)  











13
12

n
n

(vii)  











 2)12(
1

n
(viii)  







 

! 
)1(

n

n

2. Find the first four terms of each of the following sequences whose general term is :

(i) n
n 1

(ii)  2
1




n
n

(iii)  13
1
n (iv)  1n

n

(v) )1( nn     (vi)  n
1.........

3
1

2
11      (vii)  nn 1 (viii)  

2
)1(

1
n

Sequence, A.P. G.P. and H.P.



20

3. Find the general term (i.e. the nth term) of each of the following sequences :

(i) 0, 3, 8, 15, 24, ... (ii)  ,
5
9,

4
7,

3
5,

2
3,1  ...

(iii) ,
16
1,

8
1,

4
1,

2
1,1  ... (iv)  1, 0, 1, 0, 1, 0, ...

(v) ,
8
7,

6
5,

4
3,

2
1

... (vi)  ,
64
9,

36
7,

16
5,

4
3

 ...

(vii) ,
5
4,

4
5,

3
2,

2
3,0  ... (viii)  

11
!4,

8
!3,

5
!2,

2
!1

 ...

(ix) ,
5.4

1,
4.3

1,
3.2

1,
2.1

1
... (x) ,43,32,21,1   ...

4. Find the nth term of the sequence 5
1,

4
1,

3
1,

2
1  ... and hence obtain the 9th term.

5. Determine the following sequences :

(i)
10

1
2 2
1









 nn
(ii)   15

113  nn     (iii)  50
1)2(  nnn          (iv)  

100

1
13

1


 







n
n

ANSWER

1. (i) 0, 2, 0, 2, 0 (ii)  1, –1, 1, –1, 1 (iii)  2,
6

11,
5
8,

4
5,

3
2

(iv)  ,
5

16,2,
3
4,1,1 (v)  5, 7, 11, 19, 35 (vi)  7

13,
11
17,

4
5,1,1

(vii)  81
1,

49
1,

25
1,

9
1,1 (viii)  

!5
1,

!4
1,

!3
1,

!2
1,

!1
1 

2. (i) 4
3,

3
2,

2
1,0 (ii)  6

5,
5
4,

4
3,

3
2

(iii)  27
1,

9
1,

3
1,1 (iv)  

5
!4,

4
!3,

3
!2,

2
!1

(v) 2, 6, 12, 20 (vi)  12
25,

6
11,

2
3,1 (vii)  43,32,21,1  (viii)

2
1,

2
3,

2
1,

2
3

Higher Mathematics for Class – X



21

3. (i) 12 n (ii)  n
n 12 

(iii)  12
1
n (iv)  

2
)1(1 1 n

(v)  n
n
2

12 

(vi)  24
12

n
n 

(vii)  n
n 1)1(  (viii)  13 n

n
(ix)  )1(

1
nn (x)  nn 1

4.
10
1,

1
)1( 1


 

n

n

5. (i) 
102

1...,,
11
1,

6
1,

3
1        (ii)  2, 5, 8, ..., 44

(ii)  3, 8, 15, ..., 2600 (iv)  992 3
1...,,

3
1,

3
1,

3
1,1 .

2.3 Arithmetic Progression (A.P.)

Let us consider the sequence 1, 3, 5, 7, .............

We observe that

a
1
=1

a
2
= 3=1 + 2 = a

1
+ 2

a
3
= 5 = 3 + 2 = a

2
+ 2

a
4
= 7 = 5 + 2 = a

3
+ 2

Thus, we see that the first term is 1 and each of the other terms is obtained by
adding a constant number (viz. 2) to the term preceding it.

We also observe that a
2
–a

1
=a

3
–a

2
=a

4
–a

3
=............. This means that the difference

of any two consecutive terms, taken in the same order is constant. Such a sequence is
called an arithmetic progression.

Definition : A sequence {a
n
} is called an arithmetic progression (A.P.) if there exists

a number d such that N.1  ndaa nn  The number d is called the common difference
(C.D.) of the A.P.

An A.P. is completely determined, if we know the first term and the common
difference. In fact, if a is the first term and d is the common difference of an A.P., then
the A.P. is a, a+d, a+2d, a+3d, ...............

The following are examples of A.P. :

(i)   1, 4, 7, 10, 13, .............; C.D. = 3

(ii)   2, –1, –4, –7, –10, .......; C.D. = –3

(iii) –10, –6, –2, 2, 6, ..........; C.D. = 4

Sequence, A.P. G.P. and H.P.
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2.4 The nth Term of an A.P.

Let a be the first term and d be the common difference of an A.P. Then the A.P.
is a, a+d, a+2d, a+3d, ...

Denoting the successive terms by a
1
, a

2
, a

3
, a

4
, ..., we have

a
1
= a = a + ( 1 – 1 ) d

a
2
= a + d = a + ( 2 – 1 ) d

a
3
= a + 2 d = a + ( 3 – 1 ) d

a
4
= a + 3 d = a + ( 4 – 1 ) d

..........................................

Following the pattern, we have

dnaan )1( 

Thus, for an A.P. whose first term is a and common difference is d, the nth term
(or the general term) a

n
 is given by

dnaan )1(  .

Example 4.  If the nth term of a sequence be 2n–3, show that the sequence is an A.P.
Hence find its first term and the common difference.

Solution : If a
n
 denote the nth term of the given sequence, we have

a
n
= 2 n – 3

 123)1(21  nnan

Now, )32()12(1  nnaa nn

 = 2, a constant.

Thus, we see that, N.21  naa nn

Hence the given sequence i.e. {2n–3} is an A.P. with common difference 2.

Also, the first term of the A.P.=a
1
=2.1–3=–1.

Example 5.  If the first term of an A.P. is 2 and common difference is 3, find its 10th
term and 15th term.

Solution : Here, first term, a=2

   and common difference, d=3

 10th term = daa )110(10 

     = 2+9×3=29

and 15th term = daa )115(15 

 =  2+14×3=44 .

Higher Mathematics for Class – X
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Example 6.  Find the 20th term of the A.P. 3, 7, 11, 15, .................

Solution : Here, first term, a=a
1
=3

and common difference, 43712  aad

 daa )120(20 

    = 3+19×4

    = 79.

Example 7.  Examine if 70 is a term of the A.P. 5, 8, 11, 14, 17, .............

Solution : For the given A.P., we have

first term, a=5

and common difference, d=8–5=3

If 70 be the nth term of the A.P., then

70=a+(n–1)d

 70=5+(n–1)×3

 70=3n+2

 3 n = 6 8

 3
222

3
68 n

But this is absurd, in as much as the natural number n cannot be fractional.

Hence, 70 is not a term of the given A.P.

Example 8.  Which term of the A.P. –3, 1, 5, 9, .............. is 65 ?

Solution : For the given A.P., we have

a=–3 and d=1–(–3)=4

Let 65 be the nth term of the A.P.

Then    65=a+(n–1)d

 65=–3+(n–1)×4

 4n=72

 n=18

Hence, 65 is the 18th term of the given A.P.
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Example 9.  The 12th and 15th terms of an A.P. are 68 and 86 respectively. Find its
18th term.

Solution : Let a be the first term and d be the common difference of the A.P.

Then by question, we have

         a
12

=68

 a+11d=68  ............... (1)

and a
15

=86

 a+14d=86  ............... (2)

Solving (1) and (2), we get

a=2 and d=6

 a
18

=a+17d=2+17×6=104.

Example 10. The pth and qth term of an A.P. are respectively q and p. Prove that the
(p+q)th term is 0.

Solution : Let a be the first term and d be the common difference of the A.P.

By question, we have

         a
p
=q

 a+(p–1)d=q   ............... (1)

and a
q
=p

 a +(q –1)d=p  ............... (2)

Subtracting  (2) from (1), we get

(p–q)d=q–p

 1



qp
pq

d

Then from (1), we have

a+(p–1)×(–1)=q

 a=p+q–1

 (p+q)th term
 
=a

p+q
=a+(p+q–1)d

   =(p+q–1)+(p+q–1)×(–1)

   = 0.
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Example 11. If 222 ,, cba  are in A.P., show that bacbcb 
1,1,1

 are also in A.P..

Solution : Since 222 ,, cba  are in A.P., we have

2222 bcab   ................ (i)

Now, baaccb 
1,1,1

 will be in A.P..

if acbacbac 









1111

i.e. if ba
bc

cb
ab







i.e. if (b–a) (b+a) = (c–b) (c+b)

i.e. if b2–a2 =c2–b2, which is true by (i)

Hence  baaccb 
1,1,1

 are in A.P..

Example 12. If the pth, qth and rth terms of an A.P. are respectively x, y and z,

prove that

.0)()()(  zqpyprxrq

Solution : Let a be the first term and d be the common difference of the A.P.

Then by question, we have

dpax )1(   ................ (1)

dqay )1(   ................ (2)

draz )1(   ................ (3)

Multiplying (1), (2), (3) by (q–r), (r–p), (p–q) respectively and adding,

we get

zqpyprxrq )()()( 

])1()[(])1()[(])1()[( draqpdqaprdparq 

drqpqprprqaqpprrq )]1)(()1)(()1)([()]()()[( 

000  da .
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2.5 Arithmetic Mean

When three quantities are in A.P., the middle one is called the arithmetic mean (A.M.)
between the other two. Thus, if a, x, b are in A.P., then x is the A.M. between a and
b, and we have

x–a=b–x

 2x=a+b

 x= 2
1

(a+b)

Hence A.M. between a and b is 2
1

 (a+b).

Again, if ,.,,.........,, 21 nxxxa b be in A.P., then ,.,,........., 21 nxxx  are called the n
arithmetic means between a and b.

To insert a given number of arithmetic means between two given quantities :

Let a and b be two given quantities, and let n be the number of arithmetic means
to be inserted between a and b.

Thus we have altogether (n+2) terms of an A.P. of which the first term is a and
the (n+2)th term (i.e. the last term) is b.

If d be the common difference, then

dnab }1)2{( 

 dnab )1( 

 1


n
abd

Hence the n arithmetic means between a and b are ,3,2, dadada  ....... nda 

i.e.
1

)(
,,.........

1
)(2

,
1 








n
abn

a
n

ab
a

n
aba .

Example 13. Insert 4 arithmetic means between 2 and 32.

Solution : Let x
1
, x

2
, x

3
, x

4
 be the 4 arithmetic means between 2 and 32. Then 2,

x
1
, x

2
, x

3
, x

4
, 32 are in A.P.

Here, 2 is the first term and 32 is the 6th term.

If d be the common difference, then

32 = 2 + (6–1) d

 30=5d

 d=6
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 86221  dx

14622222  dx

20632323  dx

and 26642424  dx

Hence the required means are 8, 14, 20 and 26.

2.6 Sum of First nTerms of an A.P.

Let a be the first term and d be the common difference of an A.P.

If l be the nth term of the A.P., then

l=a+(n–1)d
 
........... (1)

Let S be the sum of the first n terms of the A.P.

Then, ldadaa  ...)2()(S  ............(2)

On writing the terms in the reverse order, we have

adldll  ...)2()(S  .............(3)

Adding the corresponding terms in (2) and (3), we get

)(...)()()(S2 lalalala 

    =n(a+l), since there are n terms

     S )(
2

lan   ................(4)

     ])1([
2

dnaan       [using (1)]

     ])1(2[
2

dnan   ............. (5)

(4) or (5) may be used as the standard result for the sum of first n terms of an
A.P.

Example 14.  Find the sum of the first 30 terms of the A.P. 1, 4, 7, 10, ....... .

Solution : Here, a=1, d=4–1=3, n=30

 Reqd. sum = ])1(2[
2

dnan 

  ]3)130(12[
2

30 

  =15(2 + 87)

  =15 × 89 = 1335.
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Example 15.  Find the sum of the following series :

24+22+20+ . . .  +6

Solution : The terms of the given series are in A.P. of which, first term, a=24 and

common difference, d = 22 – 24 = –2.

Let n be the number of terms in the series.

Then, 6na

 6)1(  dna

 6)2()1(24  n

 18=2(n–1)

 n–1=9

 n=10

  Reqd. sum )(
2

lan 

)624(
2

10      [ l = a
n
= 6]

= 5×30

=150.

Example 16.  How many terms of the A.P. 24, 20, 16, 12, .......... must be taken so
that the sum may be 72. Explain the double answer.

Solution : Here, a=24 and d=20–24=–4.

Let n terms of the A.P. give a sum 72.

 72])1(2[
2

 dnan

 72)]4()1(242[
2

 nn

 72)112(2  nn

 36)13(  nn

 036132  nn

 0)9()4(  nn

 n=4, 9
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Both these value of n satisfy the conditions of the question, for, if we write
down the first 9 terms, we get 24, 20, 16, 12, 8, 4, 0, –4, –8. It is
seen that the sum of the last five consecutive terms is zero. Hence, the
sum of the first 9 terms is the same as the sum of the first 4 terms of the
A.P.

Example 17.  The 5th and 12th terms of an A.P. are 14 and 35 respectively. Find the
sum of the first 20 terms of the A.P.

Solution : Let a be the first term and d be the common difference of the A.P. Then,
a

5
=14

 a + 4d = 14 ................... (1)

and a
12

=35

 a + 11d=35 .................(2)

Solving (1) and (2), we get

a= 2 and d= 3

 Reqd. sum ])1(2[
2

dnan 

    ]3)120(22[
2
20 

    6106110  .

Example 18.  If x, y, z are respectively the sum of the first p, q, r terms of an A.P.,

prove that 0)()()(  qp
r
zpr

q
y

rq
p
x

.

Solution : Let a be the first term and d be the common difference of the A.P. Then,

])1(2[
2
1])1(2[

2
dpa

p
xdpa

p
x   .................. (1)

])1(2[
2
1])1(2[

2
dqa

q
y

dqaay   ................... (2)

])1(2[
2
1])1(2[

2
dra

r
zdrarz   ................... (2)

Multiplying (1), (2), (3) by (q–r), (r–p), (p–q) respectively and adding,
we get

)()()( qp
r
zpr

q
y

rq
p
x 
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)]()1(2[
2
1)]()1(2[

2
1 prdqarqdpa 

                         )]()1(2[
2
1 qpdra 

))(1[(
2

)]()()[( rqpdqpprrqa 

            )])(1())(( qprprqq 

0
2

0  da

= 0.

EXERCISE 2.2

1. Find the 15th and 50th terms of the A.P. 1, 3, 5, 7, ....................... .

2. Find the 21st term of the A.P. 7, 4, 1, –2, –5, 8,  ....................... .

3. (i)   Which term of the A.P. 1, 4, 7, 10, ........................ is 55 ?

(ii) Which term of the A.P. ,5,
3

13,
3
11,3  ................... is 9 ?

4. Is 216 a term of the A.P. 3, 8, 13, 18, ...................... ? If not, find the term nearest
to it.

5. The first term and the common difference of an A.P. are respectively 39 and
–7. Find the 10th term.

6. The first term and 12th term of an A.P. are respectively 5 and 49. Find the common
difference.

7. How many numbers divisible by 15 are there between 20 and 400 ?

8. If the nth term of a sequence is 3n + 4, show that the sequence is an A.P. Hence
find the first term and the common difference.

9. Find the 25th term and the common difference of the A.P. whose nth term is 4n+1.

10. The 8th and 15th terms of an A.P. are 4 and –24 respectively. Find its 12th term.

11. The 13th and 22nd terms of an A.P. are respectively 6 and 9 ; which term is 8 ?

12. The pth and qth terms of an A.P. are respectively q and p. Find the nth term.

13. A sequence {a
n
} is given by

N.,12  nnan

Show that it is not an A.P.
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14. If a, b, c are in A.P., show that

(i) baaccb  ,,  are also in A.P..

(ii) )(),(),( 222 bacacbcba   are also in A.P..

(iii) abcabc
1,1,1

 are also in A.P..

15. If x, y, z be respectively pth, qth, rth terms of an A.P., show that

.0)()()(  yxrxzqzyp

16. If baaccb 
1,1,1

 are in A.P., show that 222 ,, cba  are also in A.P..

17. If the nth term of 3, 5, 7, 9, ........... is the same as that of ,
2
113,12,

2
110,9  ............,

find n.

18. The sum of three numbers in A.P. is 21 and the sum of their squares is 179. Find the
numbers.

19. The sum of three numbers in A.P. is 24 and the product of the two extremes is 55.
Find the numbers.

20. The sum of four numbers in A.P. is 48 and the product of the two extremes is 108.
Find the numbers.

21. Find the arithmetic mean between

(i)  10 and 20      (ii)  –5 and 5       (iii)  –5 and 9.

22. Insert (i) 2 arithmetic means between 2 and 11.

(ii) 3 arithmetic means between 6 and 22.

(iii) 4 arithmetic means between 5 and 20.

(iv) n arithmetic means between 1 and n2.

(v) 3 arithmetic means between 2n +1 and 2n–1.

23. There are n arithmetic means between 4 and 64. If the ratio of the fourth mean to
the eighth is 7:13, find n.

24. If 0 cba  and c
ba

b
ac

a
cb  ,,  are in A.P., prove that cba

1,1,1
 are also in A.P..

25. Find the sum of the first

(i) 20 terms of the A.P. 1, 5, 9, 13, ..................

(ii) 25 terms of the A.P. 9, 12, 15, 18, ..................
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(iii) 30 terms of the A.P. ,
3
2,2,

3
12,2,

3
21 ............

(iv) 40 terms of the A.P. 10, 8, 6, 4, .................

(v) n terms of the A.P. 3n, 3n–1, 3n–2, ...............

(vi) n terms of the A.P. ,
1

1,
1

1,
1

1
aaa   ............

26. Find the sum of the following series :

(i) 5 + 8 + 11 + ................. + 47

(ii) 4 + 7 + 10 + ................. + 49

(iii) 4 + 8 + 12 + ................. + 80

(iv) )142()........12(2)12( 

(v) )18(.........)()()( 222222 xyyxyxyxyx  .

27. (i) How many terms of the A.P. 5, 9, 13, 17, ................ must be taken so that
the sum be 1224 ?

(ii) How many terms of the A.P. 3, 8, 13, 18, .............. must be taken so that the
sum may be 1010 ?

28. How many terms of the A.P. 22, 18, 14, 10 ................ must be taken so that the
sum may be 64. Explain the double answer.

29. The 5th and 11th terms of an A.P. are 41 and 20 respectively. Find the sum of the
first 12 terms.

30. The 12th term of an A.P. is –13 and the sum of the first four terms is 24. Find the
sum of the first 10 terms.

31. The first term of an A.P. is 7 and the sum of the first 15 terms is 420. Find the
common difference of the A.P.

32. The sum of the first 15 terms and that of the first 22 terms of an A.P. are 495 and
1034 respectively. Find the sum of the first 18 terms.

33. The sum of the first 21 terms of an A.P. is 28 and that of the first 28 terms is 21.
Show that one term of the A.P. is zero, and find the sum of the preceding terms.

34. The sum of the first 10 terms of an A.P. is 30 and the sum of the next 10 terms
is –170. Find the sum of the next 10 terms following these.

35. Find the sum of the integers between 21 and 99 divisible by 6.
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36. Find the A.P. when the sum to nterms is (i)n2 (ii) 2n2+5n.

37. If the first term of an A.P. be a, its common difference be 2a and the sum of the first

n terms be S, prove that .S
a

n 

38. The sum of the first n terms & that of the first m terms of an A.P. are m and n
respectively. Show that the sum of the first (m+n) terms is –(m+n).

39. If the sum of m terms of an A.P. be equal to the sum of n terms, prove that the sum
of (m+n) terms is zero.

40. If the pth term of an A.P. is q
1

 and the qth term is ,1
p  prove that the sum of the

first pq terms is ).1(
2
1 pq

ANSWER

1. 29, 99 2.  –53 3.  (i)  19th terms  (ii)  10th term4.  No, 218

5.  –24 6.  4 7.  25 8.  7, 3 9.  101, 4 10.  –12

11. 19th term12.  p+q–n 17.  13 18. 3, 7, 11 19. 5, 8, 11

20. 6, 10, 14, 18 21.  (i) 15  (ii) 0   (iii)  2

22. (i) 5, 8      (ii) 10, 14, 18    (iii)  8, 11, 14, 17

(iv)  n+a, 2n+3, 3n+4, .......3n2+n+1      (v)  .2,2 2
1

2
1  nn

23. (i) 9

25. (i) 780 (ii)  1125 (iii)  195     (iv)  –1160

(v)
2

)15( nn
(vi)  ]2)3[

)1(2



an

a
n

26. (i) 390 (ii)  424 (iii)  840

(iv)   1322 8  (v)  )8(11 22 xyyx 

27. (i) 24    (ii)  20

28. 4 and 8 29.  429 30.  0 31.  3 32.  702

33. 2
128      34.  –370     35.  780     36.  (i) 1, 3, 5, ........  (ii) 7, 11, 15, ............
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2.7 Geometric Progression (G.P)

Let us consider the sequence 2, 6, 18, 54, .......... .

We observe that

a
1
=2

a
2
= 6=3×2 =3a

1

a
3
= 18 = 3×6=3a

2

a
4
= 54 = 3×18 =3a

3

..................................

Thus, we see that the first term is 2 and each of the other terms is obtained by

multiplying the term preceding it by a fixed number (viz. 3).

We also observe that ............
3

4

2

3

1

2 
a
a

a
a

a
a

 i.e. the ratio of any term (except the

first) to the term preceding it is the same. Such a sequence is called a geometric
progression.

Definition : A sequence {a
n
} is called a geometric progression (G.P) if there exists

a non-zero number r such that N1  nr
a

a

n

n
. The number r is called the common ratio

(C.R.) of the G.P.

A G.P. is completely determined, if we know the first term and the common ratio.

In fact, if a is the first term and r is the common ratio of a G.P., then the G.P. is a, ar,

ar2, ar3, ..............

The following are examples of G.P. :

(i) 1, 2, 4, 8,     ................ ; C.R. = 2

(ii) ,
3
1,

3
1,

3
1,1

32     ............... ; C.R.= 3
1

(iii) 3, –6, 12, –24, 48, .........; C.R.= –2.
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2.8 The nth Term of a G.P.

Let a be the first term and r be the common ratio of a G.P.  Then the G.P. is a,
ar, ar2, ar3, ................ Denoting the successive terms by a

1
, a

2
, a

3
, a

4
, ...............,  we

have

a
1

= a = ar1 – 1

a
2

= ar = ar2 – 1

a
3

= ar2 = ar3 – 1

a
4

= ar3 = ar4 – 1

........................

Following the pattern, we have

a
n

= ar n – 1.

Thus, for a G.P. whose first term is a and common ratio is r, the nth term (or the
general term) a

n
 is given by

a
n

= ar n – 1

Example 19. Find the specified term of the following G.P. :

(i)  10th term of 1, 2, 4, 8, ............

(ii)  9th term of 2, –1, 
2
1 , 

4
1 , .............

Solution : (i)  Here, a = a
1
=1 and r =

1

2

a
a

=
1
2 = 2.

  10th term = a
10

= ar 10 – 1

= 1×29 = 512

(ii)  Here, a = 2 and r = 2
1
.

  a
9
= ar 9 – 1 = 

8

2
12 






= 
128

1  
256
12 

Example 20. The 6th and 11th terms of a G.P. are 96 and 3072 respectively.  Find
the 15th term of  the G.P.

Solution : Let a be the first term and r be the common ratio.  Then

a
6

= 96

 ar 6 – 1 = 96
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 ar5 = 96 .................................................... (1)

and a
11

= 3072

 ar 11 – 1 = 3072

 ar 10 = 3072 .............................................. (2)

Dividing (2) and (1), we get

96
30725 r

 r5 = 32

 r5 = 25

 r = 2

Then from (1), we have

a × 25 = 96

 32a = 96

 a = 3

   a
15

= ar 15 – 1 = 3×214 = 49152

Example 21. Three numbers, whose sum is 15, are in A.P.; when 1, 4, 19 are added
to them respectively, the results are in G.P.  Find the numbers.

Solution : Let the three numbers in A.P. be a – d, a, a + d.

Then (a – d) + a + (a + d) = 15

 3a = 15

 a = 5

Also it is given that a – d + 1, a + 4, a + d + 19 are in G.P.
i.e. 6 – d, 9, 24 + d (taking a = 5) are in G.P.

 9
24

6
9 d

d



 81 = (6 – d) (24 + d)

 81 = 144 – 18d – d 2

 d 2 + 18d – 63 = 0

 (d – 3) (d + 21) = 0

 d = 3, – 21
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Taking d = 3, three numbers are 5 – 3, 5, 5 + 3 i.e. 2, 5, 8.

Again, taking d = – 21, the numbers are 5 – (– 21), 5, 5 + (– 21)
i.e. 26, 5, – 16.

Hence the three numbers are either 2, 5, 8 or 26, 5, – 16.

Example 22. Divide 26 into three parts which are in G.P., such that their product
is 216.

Solution : Let the three parts (which are in G.P.) be 
r
a, a, ar. Then

r
a.a.ar = 216

 a3 = 63

 a = 6

Also, r
a + a + ar = 26

 26666  rr

 2066  rr

 1033  rr

 1033 2


r
r

 3 + 3r2 = 10r

 3r2 – 10r + 3 = 0

 (r – 3) (3r – 1) = 0


3
1,3r

Hence the three parts are 
3
6 , 6, 6×3 i.e. 2, 6, 18.

(Observe that when we take r =
3
1 , we get the same set of numbers

18, 6, 2.)

Example 23. If a, b, c, d are in G.P., Prove that a2 + b2, b2 + c2, c2 + d 2 are in G.P.

Solution : Let r be the common ratio of the G.P. Then

r
c
d

b
c

a
b 

 b = ar,  c = br = ar2,  d = cr = ar3.

Now, 2
22

222

22

222

22

22

)1(
)1(

)(
)()(

r
ra
rra

ara
arar

ba
cb 









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and 2
222

242

222

2322

22

22

)1(
)1(

)()(
)()(

r
rra
rra

arar
arar

cb
dc 










Thus, )(  2
22

22

22

22
r

cb
dc

ba
cb 







Hence, a2 + b2, b2 + c2, c2 + d 2 are in G.P.

Example 24. If x, y, z be respectively the pth, qth, rth terms of a G.P., prove that
x q – r y r – p z p – q = 1.

Solution : Let a be the first  term and k be the common ratio of the G.P. Then

x = ak p – 1, y = ak p – 1, z = ak r – 1.

       qprprqrqpqpprrq akakakzyx    1  1  1    ..

= )( )1(  )( )1(  )( )1(  .. qprqpprqprrqprq kekaka 

= ))(1())(1())(1( )()()( . qprprqrqpqpprrq ka 

= a 0.k 0

= 1

2.9 Geometric Mean (G.M.)

When three quantities are in G.P., the middle one is called the geometric mean
(G.M.) between the other two.  Thus, if a, x, b are in G.P., then x is the geometric
mean between a and b, and we have

x
b

a
x 

 x2 = ab

 x = ab .

Again, if a, x
1
, x

2
,....................,x

n
, b, are in G.P., then x

1
, x

2
,........,x

n
 are called

the n geometric means between a and b.

To insert a given number of geometric means between two given quantities :

Let a and b be two given quantities, and let n be the number of geometric means
to be inserted between a and b.

Then we have altogether (n + 2) terms of a G.P. of which the first term is a and
the last term i.e. the (n + 2)th term is b.

If r be the common ratio, then
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b = 1)2( nar

 a
br n 1

 1
1









n

a
br

Hence the n geometric means between a and b are ar, ar2, ar3, ............,arn i.e.

1
1







 n

a
ba , 

1
2







 n

a
ba , 

1
3







 n

a
ba ,................,

1





 n

n

a
ba .

Example 25. Insert 3 geometric means between 4 and 64.

Solution : Let x
1
, x

2
, x

3
 be the 3 geometric means between 4 and 64.  Then 4,

x
1
, x

2
, x

3
, 64 are in G.P.

Here, 4 is the first term and 64 is the 5th term.

If r be the common ratio, then

64 = 4r5 – 1

 r4 = 16

 r4 = 24

 r = 2

 x
1

= 4r = 4×2 = 8

x
2 

= 4r2 = 4×22 = 16

and x
3

= 4r3 = 4×23 = 32

Hence the required means are 8, 16 and 32.

2.10 Sum of First n Terms of a G.P.

Let a be the first term and r be the common ratio of a G.P.

Then the nth term of the G.P. is ar n – 1.

Let S denote the sum of the first n terms of the G.P.

Then,

S = a + ar + ar2 + ................+ ar n – 1

and Sr = ar + ar2 + ......................+ ar n – 1 + ar n

By subtraction, S – Sr = a – ar n
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 S (1 – r) = a (1 – r n)


1

)1( 
1

)1( 
S







r
ra

r
ra nn

    (r 1)

If r > 1, we write 
1

)1( 
S




r
ra n

;

and if r < 1, we write 
r
ra n




1
)1( 

S .

Note : The above formula fails when r = 1. However, in this case
S = a + a + a + .................... to n terms = na.

Example 26. Find the sum of the first 10 terms of the G.P. 1, 3, 9, 27, ........

Solution : Here, a = 1, 3
1
3 r , n = 10.

   Reqd. sum =
13

)13(1
1

)1( 10







r
ra n

= 29524
2

59048
2

159049 

Example 27. If a, b, c are in A.P. and x, y, z are in G.P., prove that x b – c. y c – a.
z a – b = 1.

Solution : Since a, b, c are in A.P., therefore

b – a = c – b

 a – b = b – c

 a + c = 2b

Again, since x, y, z are in G.P., therefore

y
z

x
y 

 xz = y2

Then, x b – c . y c – a . z a – b = x a – b . y c – a . z a – b    [  b – c = a – b]

= (xz)a – b . y c – a

= (y2)a – b . y c – a  [  xz = y2]

= y 2a – 2b . y c – a

= y 2a – 2b + c – a

= y a + c – 2b

= y 2b – 2b  [  a + c = 2b]

= y0 = 1
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Example 28. How many terms of the G.P. 2, 3, 
2
14 ,............ must be taken to give

a sum equal to 
8
326 ?

Solution : Here, a = 2 and 
2
3r .

Let n terms of the G.P. give a sum 
8
326 .


8
326

1
)1( 




r
ra n


8

211

1
2
3

1
2
32




















n


8

2111
2
34 
















n


32
2111

2
3 






n

 1
32
211

2
3 






n


32
243

2
3 






n


5

2
3

2
3 













n

 n = 5
Hence the required number of terms is 5.

Example 29. If S be the sum, P, the product and R, the sum of the reciprocals of

n terms of a G.P., prove that 
n








R
SP2

Solution : Let a be the first term and r be the common ratio of the G.P. Then

S =
1

)1(
.............. 132


 

r
ra

arararara
n

n

P = 132 . ................. . .  .  . narararara

= )1(...........321  nnnra

= 2
)1( nn

nra    



 

2
)1(

1).2(1.2
2

1)1(.......321
nn

nnn
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and R = 12

1..................111


nararara

= 

r

ra

n

11

111


















= )1(
1

1

11

1 









 

 rar
r

r
r

r
r

a
n

nn

n

Now, P2 = 
2

2
)1(








 nn
nra

= )1(2 nnnra

and
n








R
S

=  
n

n

nn

r
rar

r
ra











 

1
)1(

1
)1( 1

=  (a2r n – 1)

=  a2n rn (n – 1)

Hence, 
n








R
SP2

EXERCISE 2.3

1. Find the specified term of the following G.P. :

(i) 14th term of ................................. 1,  ,
2
1  ,

4
1  ,

8
1

(ii) 7th term of 81, – 27, 9, – 3,.............................

(iii) 10th term of .............................. ,22  ,2  ,
2

1

(iv) 8th term of p2, pq, q2,.........................................

2. Find the value of k so that the following may be in G.P. :

(i) k + 1, 2k + 2, 5k – 2 (ii) 3k + 1, 6k – 4, 3k – 2

(iii) k – 1, 3k – 3, 8k – 2
3. The fourth and seventh terms of a G.P. are 54 and 1458 respectively.  Find the

10th term.
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 4. (i) Which term of the G.P. 9, 3, 1, ....................... is 
243
1 ?

(ii) Which term of the G.P. 32, – 16, 8, – 4, ............. is 
32
1 ?

 5. If the sum of three numbers in G.P. is 104 and their product is 13824, find the
numbers.

 6. Divide 42 into three parts which are in G.P. such that their product is 512.

 7. Divide 31 into three parts which are in G.P. such that the sum of their squares
is 651.

 8. Three numbers whose sum is 18, are in A.P.. When 2, 4, 11 are added to them
respectively, the resulting numbers are in G.P.. Find the numbers.

 9. The product of three numbers in G.P. is 729 and the sum of their products in
pairs is 819.  Find the numbers.

10. If a, b, c, are in G.P., show that (i)  a2 + b2, ab + bc, b2 + c2 are in G.P.

                                 (ii)  
cbbba 

1  ,
2
1  ,1  are in A.P..

11. If a, b, c, d are in G.P., prove that

(i)  a + b, b + c, c + d are in G.P.

(ii) a2 – b2, b2 – c2, c2 – d 2 are in G.P.

(iii) (a – b)2, (b – c)2, (c – d)2 are in G.P.

(iv)
222222

1 ,1 ,1
dccbba 

 are in G.P..

12. If pth, qth, rth terms of a G.P. are also in G.P., show that p, q, r are in A.P.

13. If a, b, c, d are in G.P., show that

(i) (b + c) (b + d) = (c +a) (c + d)

(ii) (a2 + b2 + c2) (b2 + c2 + d 2) = (ab + bc +cd)2

(iii) (b – c)2 + (c – a)2 + (d – b)2 = (a – d)2

14. If 1, 1, 3, 9 be added respectively to the four terms of an A.P., a G.P.
results.  Find the four terms of the A.P..

15. If a, b, c be the pth, qth, rth terms both of an A.P. and of a G.P., show that
ab – c bc – a ca – b =1.

16. If a, b, c are in G.P. and zyx cba
111

 , show that x, y, z are in A.P..
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17. Find the geometric mean between

(i)  3 and 27    (ii)  2  and 28     (iii)  
5
1 and 125

18. Insert (i) 2 geometric means between 2 and 
4
1.

(ii)  2 geometric means between 
3
1  and 

8
9 .

(iii)  3 geometric means between 3 and 48.

(iv)  3 geometric means between – 2 and 
8
1 .

(v)  5 geometric means between 8 and 
8
1 .

(vi)  3 geometric means between a and a
1 .

19. The arithmetic mean between two numbers is 15 and their geometric mean

is 9.  Find the numbers.

20. If a be the arithmetic mean between b and c, and p, q be the geometric means
between them, show that p3 + q3 = 2abc.

21. If a, b, c be in G.P. and x, y be the arithmetic means between a, b and b, c
respectively, show that

(i)  
byx
211  (ii) 2

y
c

x
a .

22. Prove that the product of n geometric means between a and b is 2)(
n

ab .

23. Find the sum of the first

(i) 10 terms of the G.P. 1, 2, 4, 8, .................

(ii) 8 terms of the G.P. .................... ,
27
1  ,

9
1  ,

3
1  ,1

(iii) 12 terms of the G.P. 8, 4, 2, 1, ......................

(iv) 7 terms of the G.P. 1, – 3, 9, – 27, ..................

(v) 9 terms of the G.P. .................... ,
8
1  ,

4
1  ,

2
1  ,1 

(vi) n terms of the G.P. ........................ ,
125

1  ,
25
1  ,

5
1  ,1

(vii) n terms of the G.P. 3, – 6, 12, – 24, ....................

24. (i) How many terms of the G.P. 1, 3, 9, 27, .............. must be taken so that
their sum is equal to 3280 ?
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(ii) How many terms of the G.P. 
3
11 , 2, 3, ............... must be taken so that

their sum is equal to 
12
211 ?

25. Find the least value of n, for which 1 + 3 + 32 + ..................+ 3n > 1000.

26. The 5th term of a G.P. is 48 and the 12th term is 6144.  Find the sum of the
first 10 terms.

27. In a G.P., the first term is 5, the last term is 320 and the sum is 635.  Find
the 4th term.

28. The sum of the first 6 terms of a G.P. is 9 times the sum of the first 3 terms.
If the 7th term be 384, find the sum of the first 10 terms.

29. The sum of the first 10 terms of a G.P. is 33 times the sum of the first 5 terms.
Find the common ratio.

30. The first and the last terms of a G.P. are respectively 3 and 768 and the sum
is 1533.  Find the number of terms and the common ratio.

31. If S
1
, S

2
, S

3
 be the sums of the first n terms, 2n terms, 3n terms respectively

of a G.P., prove that

(i) )S(SSSS 321
2

2
2

1 

(ii) 2
21231 )S(S)S(SS 

ANSWER

1. (i) 1024  (ii) 
9
1    (iii) 2 526    (iv) 5

7

p
q

2. (i) 6     (ii) 1    (iii) 7

3. 39366    4.  (i) 8th term   (ii) 11th term

5.  8, 24, 72 6.  2, 8, 32 7.  1, 5, 25

8. 3, 6, 9 or 18, 6, – 6 9.  1, 9, 81 14. 1, 3, 5, 7

17. (i) 9  (ii) 4   (iii) 5

18. (i) 1, 
2
1   (ii) 

3
4 ,

2
1     (iii) 6, 12, 24  (iv)  –1, 

2
1 , 

4
1  or 1, 

2
1 , 

4
1

(v)  4, 2, 1, 
2
1 , 

4
1      (vi) a , 1, 

a
1

19. 3, 27

23. (i) 1023  (ii) 
2187
3280

  (iii) 
2048
4095

  (iv) 547  (v) 
256
171

  (vi)  




 

n5
11

4
5

(vii)  1 – (– 2)n
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24.  (i) 8  (ii) 5 25. 6 26. 26.3069

27. 40 28. 6138 29. 2

30. 8 and 2

———

2.11 Harmonic Progression (H.P.)

Let us consider the sequence .  We observe that in

this sequence, the reciprocals of the terms form the sequence 2, 5, 8, 11, ..........., which
is an A.P.  Such a sequence is called a harmonic progression.  Thus, the reciprocals of
the terms of a harmonic progression form an A.P.

Definition :  A sequence {a
n
} is called a harmonic progression (H.P.) if the

sequence  is an A.P. i.e. if there exists a number d such that 

.

Obviously, the terms of an H.P. may be determined in a manner similar to that of
an A.P.  As every H.P corresponds to an A.P, problems relating to H.P are solved with
reference to the corresponding A.P.

The following are examples of H.P. :

(i)     (  1, 2, 3, 4, ......... are in A.P.).)

(ii)     (  4, 1, –2, –5, ......... are in A.P.).)

(iii)  (  a, a + d, a + 2d, a + 3d, .........
    are in A.P.)

2.12 Harmonic Mean (H.M.)

When three quantities are in H.P., the middle one is called the harmonic mean
(H.M.) between the other two.  Thus, if H be the harmonic mean between a and b,

then a, H, b are in H.P. and consequently  are in A.P..
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
ab

ba 
H
2


ba

ab


 2H

Hence, the harmonic mean between a and b is 
ba

ab


2 .

2.13 Relation Between A.M., G.M. and H.M. of Two Unequal
Quantities

To show that (i) A.M., G.M. and H.M. are in G.P.

(ii) A.M. > G.M. > H.M.

Let A, G and H be respectively the arithmetic mean, geometric mean and harmonic
mean between two unequal positive real numbers a and b.

Then, A = 2
ba 

, G = ab , H =
ba

ab


2 .

(i)  Now, A×H = ba
abba


 2
2

= ab

= G2


G
H

A
G 

 A, G, H are in G.P.

(ii)  Again, A – G = abba 
2

=  abba 2
2
1 

=   0
2
1 2

 ba  [  a and b are positive and unequal]

 A – G > 0

 A > G ................................................ (1)

Also, A×H = G2

 1
G
A

H
G    [  A > G]


H
G

> 1

 G > H....................................................... (2)

Combining (1) and (2), we get

A > G > H
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Note.  It may be noted that the above inequality reduces to an equality
(i.e. A = G = H) when a = b.

Example 30. Find the 6th term of the H.P. 4, 2, 
3
4 , ...............

Solution : Let a be the first term and d be the common difference of the A.P.
corresponding to the given H.P. Then,

a =
4
1  and d =

4
1

4
1

2
1 

   6th term of the corresponding AP

= a + 5d

=
2
3

4
5

4
1

4
15

4
1 

   6th term of the given H.P. =
3
2

Example 31. Find the 15th term of the H.P. whose 2nd term is 2 and 31st term

is 
31
4 .

Solution : Let a be the first term and d be the common difference of the A.P.
corresponding to the given H.P.

Then by question, we have

a + d =
2
1 ................................................ (1)

and a + 30d =
4
31 ............................................ (2)

Solving (1) and (2), we get

4
1a  and 

4
1d

   15th term of the A.P.. = a + 14d

=
4

15
4
114

4
1 

Hence, 15th term of the H.P. = 
15
4

.

Example 32. If a, b, c are in H.P., show that 
ba

c
ac

b
cb

a


  ,  ,  are also in H.P..

Solution : a, b, c are in H.P.


cba
1  ,1  ,1  are in A.P..
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
c

cba
b

cba
a

cba    ,  ,  are in A.P..


c

ba
b

ac
a

cb  1  ,1  ,1  are in A.P..


c

ba
b

ac
a

cb    ,  ,  are in A.P..


ba

c
ac

b
cb

a


  ,  ,  are in H.P..

Remark : In the above example, we have used the following facts :

(i) If each term of an A.P. is multiplied by a non-zero constant, the
resulting sequence is still an A.P..

(ii) If a constant is added to each term of an A.P., the resulting
sequence is still an A.P..

Example 33. Insert three harmonic means between 1 and 
9
1 .

Solution : Let x
1
, x

2
, x

3
 be the three harmonic means between 1 and 

9
1 . Then

1, x
1
, x

2
, x

3
, 

9
1  are in H.P.  Therefore 9 ,1  ,1  ,1  ,1

321 xxx  are in

A.P. Obviously, 1 is the first term and 9 is the 5th term of the A.P.
If d be the common difference of the A.P., then

9 = 1 + 4d

 4d = 8

 d = 2

   
1

1
x = 1 + 2 = 3,  

2

1
x = 3 + 2 = 5 and 

3

1
x = 5 + 2 = 7.

   x
1

=
3
1

, x
2

=
5
1

 and x
3

=
7
1

Hence the required means are 
3
1 , 

5
1  and 

7
1

Example 34. If kcba zyx   and a, b, c are in G.P., show that x, y, z are

in H.P.

Solution : We have kcba zyx   (say)

 zyx kckbka
111

  ,  , 

Since a, b, c are in G.P., therefore

b
c

a
b 
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
y

z

x

y

k

k

k

k
1

1

1

1



 yzxy kk
1111 



 yzxy
1111 

 zyx
1  ,1  ,1  are in A.P..

 x, y, z are in H.P.

EXERCISE 2.4

1. Find the specified term of each of the following H.P. :

(i) 10th term of ........,.........
10
1  ,

7
1  ,

4
1  ,1

(ii) 5th term of ..............,.........
2
3  ,1  ,

4
3

(iii) 6th term of 3, 
2
11 , 1, ....................

(iv) 20th term of 1, 
5
31 , 4, ...................

(v) nth term of 
3
211 , 

4
38 , 7, 

6
55 ,..............

2. Find the H.P. whose

(i) 1st term is 
8
13  and 4th term is 

13
71 .

(ii) 4th term is 
12
1

 and 14th term is 
42
1

.

(iii) 7th term is 
5
2

 and 17th term is 
25
2

.

3. Find the 19th term of the H.P. whose 5th and 10th terms are 
151
36  and 

35
4

respectively.

4. Insert(i) two harmonic means between 
3
1  and 

81
1

(ii) three harmonic means between 
5
22  and 12

(iii) four harmonic means between 1 and 6

(iv) three harmonic means between a and b.



51Sequence, A.P. G.P. and H.P.

5. If the pth term of an H.P. be q and the qth term be p, prove that

(i) (p + q)th term is 
qp

pq


(ii) nth term is n
pq

(iii) (pq)th term is 1.

6. If the pth, qth and rth terms of an H.P. be a, b, c respectively, show that
(q – r) bc + (r – p) ca + (p – q) ab = 0.

7. If a2, b2, c2 are in A.P., prove that b + c, c + a, a + b are in H.P.

8. If a, b, c be in A.P. and p, q, r be in H.P., show that 
pr

rp
bq

ca   .

9. If 
2

  ,  ,
2

cbbba   be in H.P., show that a, b, c are in G.P..

10. If a, b, c are in H.P., show that 
cba 

 11 , 
acb 

 11 , 
bac 

 11  are also in H.P..

11. If a, b, c be in A.P., b, c, d in G.P. and c, d, e in H.P., prove that a, c, e are
in G.P.

12. If a, b, c be in G.P., show that xxx cba log  ,log  ,log  are in H.P..

13. If a, b, c are in A.P. and b, c, d are in H.P., prove that ad = bc.

14. If x
1
, x

2
, x

3
, ..............., x

n 
are in H.P., show that x

1
x

2
+ x

2
x

3
+ ....... + x

n –1
x

n
=

(n – 1)x
1
x

n
.

15. If a, b, c, d are in H.P., prove that a + d > b + c.

16. The G.M. and H.M. between two numbers are 9 and 
5
27 respectively.  Find

the numbers.

17. If A.M. and G.M. of two positive numbers are 12 and 6 respectively, find
their H.M.

18. If 
c

cba
b

bac
a

acb    ,  ,  be in A.P., show that a, b, c are in H.P..

19. Which term of the H.P. 1, 
5
8 , 4, ........... is 

8
1 ?

20. If A be the A.M. and H be the H.M. between a and b, prove that

H
A

H
A

H
A 







b
b

a
a .
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ANSWER

1. (i)  
28
1   (ii) 0  (iii) 

2
1

  (iv)  
49
8   (v)  

2
35
n

2. (i) ........,.........
13
71  ,

27
231  ,

43
142  ,

8
13

(ii) ........,.........
12
1  ,

9
1  ,

6
1  ,

3
1

(iii) ................. ,
3
2 ,

5
2  ,

7
2 

3.
19
1

4. (i)  
55
1  ,

29
1   (ii)  3, 4, 6  (iii)  

5
6 , 

2
3 , 2, 3  (iv)  

ba
ab

ba
ab

ba
ab

 3
4  ,2  ,

3
4

16. 3 and 27 17. 1 19. 25th term.

———

2.14 Sum of Some Important Finite Series

(i) Sum of the first n natural numbers.

Let S = 1 + 2 + 3 + ................... + n.

This being a series in A.P. with first term = 1 and nth term = n, we have

S = )1(
2

nn   [Using the formula S = )(
2

lan  ]

= 
2

)1( nn
.

 1 + 2 + 3 + ....................................+ n =
2

1)( nn
.

(ii) Sum of the squares of the first n natural numbers.

Let S = 12 + 22 + 32 + .........................+ n2.

We have, r3 – (r – 1)3 = 3r2 – 3r + 1.

Putting r = 1, 2, 3, ........................, n successively, we get

13 – 03 = 3.12 – 3.1 + 1

23 – 13 = 3.22 – 3.2 + 1

33 – 23 = 3.32 – 3.3 + 1

....................................

n3 – (n – 1)3 = 3.n2 – 3.n + 1
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By adding, we get

n3 = 3 (12 + 22 + 32 + ..........+ n2) – 3 (1 + 2 + 3 +.......... + n) + n

 n3 = 3S – n
nn 
2

)1(
.3

 3S = n3 +
2

)1(3 nn
– n

= }2)1( 32{
2

2  nnn

= )132(
2

2  nnn

= 2
)12( )1(  nnn

  S = 6
)12( )1(  nnn

  12 + 22 + 32 + ..................+ n2 =
6

1)(2 1)(  nnn
.

(iii) Sum of the cubes of the first n natural numbers.

Let S = 13 + 23 + 33 + ...................... + n3.

We have, (r + 1)2 – (r – 1)2 = 4r

 r2.(r + 1)2 – (r – 1)2.r2 = 4r3  (multiplying both sides by r2)

Putting r = 1, 2, 3, ..................., n successively, we get

12.22 – 02.12 = 4.13

22.32 – 12.22 = 4.23

32.42 – 22.32 = 4.33

.............................

n2 (n + 1)2 – (n – 1)2n2 = 4.n3

By adding, we get

n2 (n + 1)2 = 4(13 + 23 + 33 + ....................+ n3) = 4S

 S = 
4

)1( 22 nn

= 
2

2
)1(







 nn

  13 + 23 + 33 + ...................+ n3 = 
2

2
1)(







 nn

.
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2.15 The “ ”Notation

The greek letter  (sigma) is often used to denote the sum of a number of similar

terms.  For example, the sum 1 + 2 + 3 + ................. + n may be denoted by 


n

r
r

1
 or

simply by n.

Thus,
2

)1( 
...................321


nn

nn

6
)12( )1( 

...................321 22222 
nnn

nn

2
33333

2
 )1( 

...................321






 

nn
nn .

Also, it is easy to see that    22 )( nbnabnan .

Example 35. Find the sum to n terms of the following series :

(i)  2 + 4 + 6 + .............................

(ii) 1 + 3 + 5 + ............................

Solution : (i)  Here, t
n

= nth term of the series = 2n

  Reqd. sum =    nntn 22

= )1(  
2

)1(
.2 

nn
nn

(ii) Here, t
n

= nth term of the series = 2n – 1

  Reqd. sum =   )12( ntn

=   12 n

= n
nn 
2

)1( 
.2  [ 1= 1+1+1+.....to n terms = n]

= n (n + 1) – n

= n2

Alternatively,

Reqd. sum = ]2).1(1.2[
2

 nn  [  the given series being in A.P..
                  with first term 1 and C.D. 2]

= )222(
2

 nn

= n2
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Example 36. Sum the series 1.2.3 + 2.3.4 + 3.4.5 + ............ to n terms.

Solution : Clearly, the nth term of the series is n (n + 1) (n + 2).

  The reqd. sum =   )2( )1( nnn

=   )23( 2 nnn

=   )23( 23 nnn

=    nnn 23 23

= 
2

)1(3
.2

6
)12( )1( 

.3
2

)1( 
2 






  nnnnnn

= )1( 
2

)12)(1(
4

)1( 22


nn
nnnnn

= )4)12(2)1([
4

)1( 
nnn

nn

= )65.(
4

)1( 2 
nn

nn

= )3( )2( )1( 
4
1  nnnn

Example 37.  Sum the series 1 + (1+2) + (1+2+3) + .................to n terms.

Solution : Here, nth term = 1 + 2 + 3 + ............... + n = 2
)1( nn

  Reqd. sum = 


2
)1( nn

=   )(
2
1 2 nn

=    nn2  
2
1

= 



 

2
)1( 

6
)12( )1( 

 
2
1 nnnnn

= )312.(
12

)1( 
n

nn

= )2(2.
12

)1( 
n

nn

= )2( )1( 
6
1  nnn
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EXERCISE 2.5

Find the sum of the following series to n terms :

1. 1+4 + 7 + 10 + ..........................

2. 12 + 32 + 53 + .............................

3. 1.2 + 2.3 + 3.4 + .......................

4. 1.3 + 3.5 + 5.7 + ........................

5. 1.22 + 2.32 + 3.42 + .....................

6. 1.32 + 2.42 + 3.52 + ....................

7. 1.22 + 3.52 + 5.82 + ......................

8. 1 + (1 + 3) + (1 + 3 + 5) + ............

 9. 13 + 33 + 53 + .............................

10. 1.1 + 2.3 + 3.5 + .......................

11. 1.3 + 2.5 + 3.7 +.........................

12. 1.2.4 + 2.3.7 + 3.4.10 + ....................

13. ....................
3

321
2

211 

14. 2.4 + 4.6 + 6.8 + .............................

15. 1.3.5 + 3.5.7 + 5.7.9 + ............................

16. 1.4.7 + 2.5.8 + 3.6.9 + .............................

17. 1.5.9 + 2.6.10 + 3.7.111 + .........................

18. 1.2.4. + 2.3.5 + 3.4.6 + ............................

19. 1.3.4 + 2.4.5 + 3.5.6 + ............................

20. 1.3.5 + 2.4.6 + 3.5.7 + ..........................

21. ...................
3

321
2

211
22222

2 

22. 12 + (12 + 22) + (12 + 22 + 32) + ..................

23. ..............
321
321

21
21

1
1 333333








24. .................
4

321
3

21
2

1 222222


25. 2 + (2 + 5) + (2 + 5 + 8) + .............................
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ANSWER

1. )13( 
2
1 nn 2. )14( 

3
1 2 nn 3. )2( )1( 

3
1  nnn

4. )164( 
3
1 2  nnn 5. )53( )2( )1( 

12
1  nnnn

6. )32193( )1( 
12
1 2  nnnn 7. )1449(

2
1 23  nnnn

8. )12( )1( 
6
1  nnn 9. n2(2n2 – 1) 10. )14( )1( 

6
1  nnn

11. )54( )1( 
6
1  nnn 12. )4259( )1( 

12
1 2  nnnn

13. )3( 
4
1 nn 14. )2( )1( 

3
4  nnn 15. n(2n3 + 8n2 + 7n – 2)

16. )7( )6( )1( 
4
1  nnnn 17.  )9( )8( )1( 

4
1  nnnn

18. )133( )2( )1( 
12
1  nnnn 19.  )46233( )1( 

12
1 2  nnnn

20. )5)(4( )1( 
4
1  nnnn 21.  )17154( 

36
1 2  nnn

22. )2()1(
12
1 2  nnn 23. )2( )1( 

6
1  nnn 24. )54( )1( 

36
1  nnn

25. 2)1( 
2
1 nn

———
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CHAPTER 3

MATHEMATICAL INDUCTION

3.1 Introduction

The word ‘induction’ means inferring a general statement from the validity of
particular cases.  Mathematical induction is a method which is frequently used to establish
the truth of a mathematical proposition or statement involving natural numbers and it
provides a logical proof to generalise a mathematical result concerning natural numbers.

A mathematical proposition involving natural numbers is generally denoted by P(n),
(nN).  If we substitute n = 4 in the statement P(n), the particular statement so obtained
is denoted by P(4).  For example, if P(n) is the statement “n(n+1) is even”, then P(4) is
the statement “4(4+1) is even” i.e., “20 is even”.

The proof of a mathematical proposition by the method of mathematical induction is
based on a principle known as the Principle of Mathematical Induction or simply
Principle of Induction, which is given in the next section.

3.2 Principle of Mathematical Induction

It states that if P(n) be a mathematical proposition such that

(i)  P(1) is true, and

(ii) P(k + 1) is true whenever P(k) is true, where k is an arbitrary value of n
  (i.e. P(k) is true  P(k+1) is true,)

then P(n) is true nN.

Thus, the method of mathematical induction requires the following three basic steps
in proving a mathematical proposition or theorem.
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(i) Verification : Verify the validity of P(n) for n = 1 (least value of n)
i.e. verify that P(1) is true.

(ii) Inductive property : Assume P(n) is true for n = k (i.e. for some value k
of n), and then deduce that P(k + 1) is also true.

(iii) Conclusion : P(n) is true nN.

Example 1. Let P(n) be the statement

“n2 + 3n is divisible by 4”.

Is (i) P(1) true ?

(ii) P(2) false ?

Solution : When n = 1, n2 +3n = 12 + 3 × 1 = 4,  which is divisible by 4.

When n = 2, n2 +3n = 22 + 3 × 2 = 10, which is not divisible by 4.

  P(1) is true, and P(2) is false.

Example 2. If P(n) is the statement

“n2 > 10”,   nN,

prove that whenever P(k) is true, P(k+1) is also true.

Solution : Given P(k) is true i.e. k2 > 10, we are to show that

P(k+1) is true i.e. (k+1)2 > 10.

Since k + 1 > k, and also since k2 > 10,

   (k + 1)2 > k2 > 10  (k + 1)2 > 10

Hence, P(k + 1) is true.

Example 3. Prove by mathematical induction that

1 + 2 + 3 + ........... + n = 2
1)( nn

nN.

Solution : Let P(n) be the proposition

1 + 2 + 3 + ........... + n = 2
1)( nn

.
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(i)  Verification :  When n = 1,

L.S. = 1 and R.S. = 1
2
2.1

2
)11(1 

.

   L.S. = R.S.

Thus P(1) is true.

(ii) Inductive property : Let P(k) be true, k being some value of n.

Then

1 + 2 + 3 + ......... + k = 2
1)( kk

Adding (k +1) to both sides, we get

1 + 2 + 3 + ....... + k + (k + 1) = 1)(
2

1)( 
k

kk

= 2
2)1)((  kk

=
 

2
11)(1)(  kk

    P(k + 1) is true

Thus, P(k + 1) is true whenever P(k) is true.

(iii) Conclusion : Hence, by the principle of mathematical induction,
the proposition P(n) is true nN.

i.e.  1 + 2 + 3 + ............. + N
2

1)(  n
nn

n .

Example 4. Prove by mathematical induction that

12 + 22 + 32 + ............. + N  ,
6

1)1)(2(2  n
nnn

n .

Solution : Let P(n) be the proposition

12 + 22 + 32 + ............. + .
6

1)1)(2(2  nnn
n

(i)  For n = 1, L.S. = 12 = 1 and R.S. = 6
)112)(11(1 

= .1
6

321 

   L.S. = R.S. Thus P(1) is true.
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(ii)  Assume that P(k) is true for some value k of n. Then

12 + 22 + 32 + .......... + k2 = 6
1)1)(2(  kkk

Adding (k + 1)2 to both sides, we get

12 + 22 + 32 + .......... + k2 + (k + 1)2 =
21)(

6
1)1)(2( 

k
kkk

= 6
1)}6(1)(21){(  kkkk

= 6
6)71)(2( 2  kkk

= 6
6)341)(2( 2  kkkk

= 6
2)}3(2)(1){2(  kkkk

= 6
3)2)(21)((  kkk

= 6
1}1)1}{2(1)1){((  kkk

 P(k + 1) is true.

Thus, P(k) is true  P(k + 1) is true.

(iii) By the principle of mathematical induction, P(n) is true nN

i.e. 12 + 22 + 32 + .......... + n2 = N
6

1)1)(2( 
n

nnn
.

Example 5. Prove by mathematical induction that

1.2 +2.3 + 3.4 + ............+ n(n + 1) = N,
3

2)1)(( 
n

nnn
.

Solution : Let P(n) be the proposition

1.2 +2.3 + 3.4 + ............+ n(n + 1) = .
3

2)1)((  nnn

When n = 1, L.S. = 1.2 = 2 and R.S. = 2
3

3.2.1
3

)21)(11(1 
.

   L.S. = R.S.

Thus, P(1) is true.
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Let us assume that P(k) is true for some value k of n. Then,

1.2 + 2.3 + 3.4 + ............. + k (k + 1) = 3
2)1)((  kkk

Adding (k + 1) (k + 1 + 1) i.e. (k + 1)(k + 2) to both sides, we get

1.2 + 2.3 + 3.4 + .......... + k(k + 1) + (k + 1)(k + 2)

= 2)1)((
3

2)1)(( 
kk

kkk

= 3
3)2)(1)((  kkk

= 3
2}1)1}{(1)1){((  kkk

   P(k+ 1) is true.

Thus, P(k) is true  P(k + 1) is also true.

Hence, by the principle of mathematical induction, P(n) is true nN

i.e. 1.2 + 2.3 + 3.4 + ..........+ n(n + 1) = N
3

2)1)(( 
n

nnn
.

Example 6. Prove by mathematical induction that

N,
11)(

1...............
3.4
1

2.3
1

1.2
1 





 n

n
n

nn .

Solution: Let P(n) be the proposition

.
11)(

1...............
3.4
1

2.3
1

1.2
1


n

n
nn

When n = 1, L.S. = 2
1

2.1
1   and R.S. = 2

1
11

1 
 .

   L.S. =R.S.

Thus, P(1) is true.

Let us assume that P(k) is true for some value k of n

i.e.  
11)(

1.........
3.4
1

2.3
1

1.2
1







k
k

kk
.

Adding 
1)11)((

1
 kk

i.e. 
2)1)((

1
 kk

 to both sides, we get

)2)(1(
1

)1(
1........

4.3
1

3.2
1

2.1
1


kkkk
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= )2)(1(
1

1 


 kkk
k

= )2)(1(
1)2(




kk
kk

= 2)1)((
122




kk
kk

= 
2)1)((

1)( 2




kk
k

= 
11)(

1)(



k

k

 P(k + 1) is true.

Thus, P(k + 1) is true whenever P(k) is true.

   P(n) is true for all nN

i.e. N
11)(

1.............
3.4
1

2.3
1

1.2
1 





 n

n
n

nn
.

Example 7. Prove by the principle of mathematical induction that
2n5 –1 is divisible by 8 nN.

Solution : Let P(n) be the statement ‘ n25 –1 is divisible by 8’.

For n = 1, n25 –1 = 25 –1= 24 which is divisible by 8.

   P(1) is true.

Assume that P(k) is true for some value k of n

i.e.    k25 –1 is divisible by 8.

Writing k + 1 in place of k, we have
1)(25 k –1= 15 22 k

= 15.5 22 k

= 242525.52 k

= 241)25(52 k , which is obviously divisible by 8 as
k25 –1 is divisible by 8.

Thus, P(k + 1) is true whenever P(k) is true.

    P(n) is true  n N

i.e.  n25 –1 is divisible by 8  n N.
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EXERCISE 3.1

1. If P(n) is the statement ‘n2 + 2 is a multiple of 3’, show that P(2) is true and
P(3) is false.

2. If P(n) is the statement ‘ 1352  nn  is divisible by 9’, state P(2).
Is (i) P(1) true ?

(ii) P(3) false ?

3. If P(n) is the statement ‘n2 + n > 15’ and if P(k) is true, prove that P(k +1) is
true.

4. Prove by mathematical induction that  n  N,

(i) 2 + 4 + 6 + .................... + 2n = n(n + 1).

(ii) 1 + 4 + 7 + ................... + (3n – 2) =
2

1)(3 nn
.

(iii) 1 + 6 + 11 + ................ + (5n – 4) = 3)(5
2
1 nn .

(iv) 1 + 5 + 12 + 22 + ............ +
3

1)(
2

1)(3 2  nnnn
.

(v) 13 + 23 + 33 + ................. +
2

3

2
1)(







  nn

n .

(vi) 1.3 + 3.5 + 5.7 + ................. + (2n – 1)(2n + 1) = 
3

1)6(4 2  nnn
.

(vii)
112 2
12

2
1.........................

2
1

2
11 


n

n

n
.

(viii) 121)1)(2(2
1...................

5.7
1

3.5
1

1.3
1







n
n

nn .

(ix)
1132 2.3
13

3
1....................

3
1

3
1

3
11 


n

n

n
.

(x) 2 + 22 + 33 + ........................... + 2n = 2(2n – 1).

(xi) 1.2 + 2.22 + 3.22 + ..................... + n.2n = (n – 1)2n + 1 + 2.

(xii) 3)2)(1)((
4
12)1)((...............3.4.52.3.41.2.3  nnnnnnn .

(xiii) 1)1)(2(2
3
11)(2................531 2222  nnnn .

(xiv) 131)2)(3(3
1................

7.10
1

4.7
1

1.4
1







n
n

nn .
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(xv) 2n > n.

(xvi) 132 n  is divisible by 4.

(xvii) 9n – 1 is divisible by 8.

(xviii) nn ba   is divisible by a – b, (a b).

(xix) 1nx  is divisible by x – 1, (x 1).

(xx) nn ba 22   is divisible by a + b, (a – b).

(xxi) 1212   nn ba  is divisible by a + b, (a – b).

(xxii) 111 




  n

n

n

ANSWER

2. ‘630 is divisible by 9’

(i)  Yes   (ii) No
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CHAPTER 4

BINOMIAL THEOREM

4.1 Introduction

We know that algebraic expressions like x – zy, xx 13  , a – 4x, xa 1  etc. which

have got two terms, are called binomial expressions.  We have also learnt how to multiply
a binomial by another binomial or a binomial by itself.

Let us consider the binomial (a + x) where a, xR.

By actual multiplication, we have

(a + x)1 = a + x

(a + x)2 = a2 + 2ax + x2

(a + x)3 = a3 + 3a2x + 3ax2 +x3 and so on.

In the above relations, each of the expressions on the right hand side is called
binomial expansion of the binomial (a + x) for the corresponding index i.e. 1, 2 and
3 respectively.

Here, we observe that the expansion of higher powers of (a + x) like (a + x)4,
(a + x)5, (a + x)6 etc. become more and more inconvenient.  Therefore, we look for a
general formula which will help us in finding the expansion of higher powers of a binomial.

In this chapter, we shall discuss a theorem, known as the Binomial Theorem, which
gives us the general rule for the expansion of (a + x)n where n is a positive integer.  The
more general case when n is any integer or a fraction, is dealt with in
higher classes. 
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4.2 Binomial Theorem (for positive integral index)

Theorem : If a and x be any two real numbers and n be any positive integer, then

n
n

nrrn
r

nnnnnnnn xcxacxacxacacxa  ........ ........   )( 22
2

1
10  

Proof : We shall prove this theorem by the method of mathematical induction.

Let P(n) denote the proposition :

n
n

nrrn
r

nnnnnnnn xcxacxacxacacxa  ..... .........   )( 22
2

1
10  

When n = 1, we have

1
1

11
0

11   )( xcacxaxa   1  ,1  1
1

0
1  cc

   P(1) is true.

Now, let us suppose that P(k) is true for some positive integer k,
so that

k
k

krrk
r

kkkkkkkk xcxacxacxacacxa  .... .....   )( 22
2

1
10  

Multiplying both sides by (a + x), we have

1)(  kxa

= ) .... ....  ( )( 22
2

1
10

k
k

krrk
r

kkkkkkk xcxacxacxacacxa  

=  k
k

krrk
r

kkkkkkk axcxacxacxacac  .... .....  121
21

1
0   +

      1132
2

21
10  ...... ......    k

k
krrk

r
kkkkkkk xcxacxacxacxac

=       1
1

21
1201

1
0   .....    


  rrk

r
k

r
kkkkkkkkk xaccxaccxaccac

1 .....  k
k

k xc

But, 1
1

0
1

0  1 ; 1 
  k

k
k

kkk cccc  and r
k

r
k

r
k ccc 1

1


 

   1)(  kxa

= 1
1

11121
2

1
1

11
0

1  .... ....  


  k
k

krrk
r

kkkkkkk xcxacxacxacac

   P(k + 1) is true

Thus, P(k) is true  P(k +1) is true

Therefore, by the principle of mathematical induction, P(n) is true
nN i.e.

n
n

nrrn
r

nnnnnnnn xcxacxacxacacxa  .... ......   )( 22
2

1
10  
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Remarks : The expression on the right hand side of the above formula, is called
the binomial expansion of (a + x)n for the positive integral index n and
the coefficients n

nnn
o

n cccc  .,,......... , , 21  are called binomial coefficients.

Note : In the expansion of (a + x)n, nN ;

(i) The total number of terms is n + 1 (one more than the index n).
(ii) The sum of the indices of a and x in each term is equal to the

index n.

(iii) The index of a in the first term is the same as that of the binomial
(a + x) and thereafter goes on decreasing by 1 in each subsequent
term and it becomes 0 in the last term.  On the other hand, the
index of x in the first term is 0 and it goes on increasing by 1
and finally becomes equal to the index of the binomial.

(iv) The binomial coefficients in the terms equidistant from the beginning and
the end are equal.  This follows from the fact that rn

n
r

n cc  

4.3 Pascal’s Triangle

The binomial coefficients n
nnnn cccc  ...,,......... , , 210  in the expansion of (a + x)n

follow a pattern for different values of n.

When n = 0, 10
0 c

When n = 1, 1 ,1 1
1

0
1  cc

When n = 2, 1 ,2 ,1 2
2

1
2

0
2  ccc

When n = 3, 1 ,3 ,3 ,1 3
3

2
3

1
3

0
3  cccc

When n = 4, 1 ,4 ,6 ,4 ,1 4
4

3
4

2
4

1
4

0
4  ccccc

When n = 5, 1 ,5 ,10 ,10 ,5 ,1 5
5

4
5

3
5

2
5

1
5

0
5  cccccc  and so on.

These coefficients can be arranged in the form of a triangle as follows :

1st row (n = 0)

2nd row (n = 1)

3rd row (n = 2)

4th row (n = 3)

5th row (n = 4)

6th row (n = 5) and so on.

1
1

1

1

1

1

1

2

3 3

1

1

1

1

4 46

5 10 10 5
Pascal’s triangle
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In the above triangle, it is observed that each entry (except the first and the last
which are always 1) is the sum of the nearest two entries in the row immediately above
it.  Using this fact, we can determine the rows corresponding to n = 6, n = 7 etc.

This triangle gives us a handy rule for finding the coefficients of a Binomial expansion,
especially when the value of n is small.  The triangle is due to the celebrated mathematician
B.  Pascal and is known as the Pascal’s triangle.

4.4 Some Simple Deductions

In the binomial expansion,

n
n

nrrn
r

nnnnnnnn xcxacxacxacacxa  ....... .....   )( 22
2

1
10  

(i)  If x is replaced by – x, we get

    n
n

nnrrn
r

nrnnnnnnn xcxacxacxacacxa  )1(....... )1(........   )( 22
2

1
10  

(ii)  If a = 1, we get

    nr
r

nnnn xxcxcxcx  ....... ........  1)1( 2
21 ) 1  ( 0 n

nn cc 

(iii)  If a = 1 and x is replaced by – x, we get

     nnr
r

nrnnn xxcxcxcx )1(..........)1(..........  1)1( 2
21 

4.5 General Term in the Expansion of (a + x)n

In the expansion of (a + x)n, if we denote the first term by T
1
, the second term by

T
2
, the third term by T

3
 and so on, then

onnnn xacac 00101   TT  

11
1112  TT xac nn 

 

22
2123  TT xac nn 

 

33
3134  TT xac nn 

    and so on.

In general,

rrn
r

n
r xac 
  T 1

By putting r = 0, 1, 2, 3, ............, n in the (r + 1)th term T
r + 1

, we get all the  terms
of the expansion.  So, this (r + 1)th term is called the general term in the expansion of
(a + x)n.
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Thus, in the expansion of (a + x)n,

the general term = rrn
r

n
1r xac 

 T

Note :  In the expansion of (a – x)n, the general term = rrn
r

nr
1r xac 

  1)(T

4.6 Middle Term(s) in the Expansion of (a + x)n

We know that the number of terms in the binomial expansion of (a + x)n is n + 1.
So, if n is even, the number of terms (n +1) is odd, so that there will be only one middle
term.  If however, n is odd, the number of terms(n + 1) is even and hence, there will be
two middle terms.

Case I :  n is even.

Here, the number of terms is (n + 1) which is odd.  There is only one middle term

which is obviously the 
th

1
2 





 n  term.

Hence, 
1

2

T
n  is the middle term.

Case II :  n is odd.

Here, the number of terms (n + 1) being even, there are two middle terms, which

are the 
th

2
1




 n  term and 

th

1
2

1 




 n  term.

Thus, 
2

1T n  and 
2

3T n  are the two middle terms.

Example 1. Expand (3 + 2x)5 by using Binomial Theorem.

Solution : 5
5

54
4

532
3

523
2

54
1

55
0

55 )2( )2(3 )2(3 )2(3 )2(3 3 )23( xcxcxcxcxccx 

= 5432 32.116.3.58.9.104.27.102.81.5243.1 xxxxx 

= 5432 322407201080810243 xxxxx 

Example 2. Expand (2x +y)4 by using
Pascal’s triangle.

Solution : The coefficients in the
expansion of (2x +y)4 are
given by the 5th row
of the following Pascal’s
triangle :

1
1

1

1

1

1

1

11

2

3 3

4 6 4
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   4322344 1)2(4)2(6)2(4)2(1)2( yyxyxyxxyx 

= 432234 .12.44.68.416.1 yxyyxyxx 

= 432234 8243216 yxyyxyxx 

Example 3.  Write the first four terms in the expansion of  (x + 2y)10.

Solution : The first four terms in the expansion of (x + 2y)10 are

28
2

109
1

1010
0

10 )2(  ),2(  , yxcyxcxc  and 37
3

10 )2( yxc

i.e.  28910 4..45  ,2..10  ,.1 yxyxx  and 37 8..120 yx

i.e.  28910 180  ,20  , yxyxx   and 37960 yx






 





 120

321
1098  and  45

21
109  ,10  ,1  Here 3

10
2

10
1

10
0

10 cccc

Example 4. Find the 6th term in the expansion of 
8

1 




  xx

Solution : In the expansion of 
8

1 




  xx , we have

r
r

r
r

r xxc 




 


1)1(T 88

1

  
5

3
5

85
156

1 )1(TT 




  xxc

= 5
3 1..56.1

x
x

=  2
56

x


Example 5. Find the coefficient of x6 in the expansion of  (x + 3)8.

Solution : Let T
r + 1

 be the term containing x6 in the expansion.

Now, rr
rr xc )3( T 88

1


 

Since T
r + 1

 contains x6, we have

8 – r = 6

   r = 2

   T
2 + 1

 i.e. T
3
 contains x6 and

    hence the coefficient of  x6 = 8c
2
.32

                        = 28.9 = 152
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Example 6. Find the term independent of x in the expansion of  
9

23
12 






 

x
x .

Solution : Let T
r + 1

 be the term independent of x in the expansion of 
9

23
12 






 

x
x

Now, 1T r = 
r

r
r

r
x

xc 




 

2
99

3
1)2( )1(

= r
r

r
r

r xc 3999 )(
3
1)2( )1(  






Since T
r + 1

 is independent of x, the index of x in this term is 0.

       9 – 3r = 0

       r = 3

   T
3 + 1

 i.e. T
4
 is the term independent of x

and T
4
 

3
6

3
93

3
1)2( )1( 




 c

27
1.64.

321
987.1  




27
1.64.84  

27
1792  

Example 7. Find the middle term in the expansion of 
8

1 




  xx .

Solution : Here, the index 8 is even.

   There is only one middle term and it is the 
th

1
2
8 





   term i.e. T

5
.

Now, T
5
 = T

4 + 1
=  

4
48

4
8 1 







xxc

=  
4

4 1.
4321
8765

x
x




=  70

Example 8. Find the middle terms in the expansion of (2x – y)7.

Solution : Here, the index 7 is odd.

   There are two middle terms.  They are the 
th

2
17 




   and 

th

2
37 




 

    terms i.e. T
4
 and T

5
.
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Now, T
4

= T
3 + 1

=  337
3

73 )2( )1( yxc 

=  3416.
321
765 yx




=  – 560 x4 y3

and, T
5

= T
4 + 1

=  447
4

74 )2( )1( yxc 

=  43
4

7 8. yxc

=  438.
321
765 yx




=  280 x3 y4.

4.7 Properties of Binomial Coefficients

(i) The sum of all the binomial coefficients is 2n

i.e.  n
n

nnnn cccc 2 ..................  210 

(ii) The sum of the binomial coefficients of odd terms is equal to that of even terms,
each being equal to 2n – 1.

i.e.  1
531420 2...........   ..........   nnnnnnn cccccc

Proof : (i)  we have

n
n

nnnnn xcxcxccx  ................   )1( 2
210 

Putting x = 1, we have

n
nnnnn cccc  .................   )11( 210 

 n
n

nnnn cccc 2........................210 

(ii)  we have

n
n

nnnnnn xcxcxccx  )1(.................   )1( 2
210 

Putting x = 1, we have

..........................    )11( 3210  cccc nnnnn

     0............  ...........  531420  cccccc nnnnnn

 (say) ..........   ...........  531420 kcccccc nnnnnn 

Then, kccccc n
nnnnn 2 ..............   3210 
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 2n = 2k

 12
2
2  n

n

k

   1
531420 2.............   ..............   nnnnnnn cccccc

Example 9. Show that

(i)  1
321 2.......................3.2  n

n
nnnn ncnccc

(ii)  1
210 2).2( ).1(................ .3 .2  n

n
nnnn ncnccc

Solution : (i)  We have

r
ncr. =  

=  

=  

=  1
1. 


r
n cn

   2
1

31
1

20
1

1 ..3  ,..2  ,. cnccnccnc nnnnnn    etc.

Now, n
nnnn cnccc .............3.2 321 

=  1
1

2
1

1
1

0
1 ...................... 

  n
nnnn cncncncn

=  ]............[ 1
1

2
1

1
1

0
1


  n

nnnn ccccn

=  12. nn

(ii)  n
nnnn cnccc ).1(.....................3.2 210 

=     n
nnnn

n
nnnn cnccccccc ..........3.2 ..........  321210 

=  12.2  nn n        [using the result (1)]

=  11 2.2.2   nn n

=  
12).2(  nn

4.8 Simple Applications

In this section, we give some simple applications of Binomial Theorem, as illustrated
in the following examples.
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Example 10. Compute (98)4 using Binomial Theorem.

Solution : We have

(98)4 =  (100 – 2)4

=  
4

4
431

3
422

2
43

1
44

0
4 2.2.100.2.100.2.100.100. ccccc 

=  168.100.44.100.62.100.4100 234 

=  100000000 – 8000000 + 240000 – 3200 + 16

=  100240016 – 8003200

=  92236816

Example 11. Using Binomial Theorem, prove that 156  nn  is divisible by
25 for nN.

Solution : We have

6n =  (1+5)n

=  nnnn ccc 5..................5. 5. 5. 1 3
3

2
21 

=  nnn ccn 5.......................5. 5. 51 3
3

2
2      ncn 1  

 156  nn =  nnn cc 5....................5. 5. 3
3

2
2 

=   2
32

2 5...................5. 5  nnn cc

=  25 × (an integer)

   156  nn  is divisible by 25 for nN.

EXERCISE 4.1

1. How many terms are there in the expansion of

(i)  (2a – x)7      (ii)  (x + 4y)10     (iii)  (1 – 3x)15    (iv)  (2 + 5y)20  ?

2. Using Pascal’s triangle, expand

(i)  (x + y)5       (ii)  (a + 2x)4      (iii)  (3 – 2x)5

3. Expand the following using Binomial Theorem :

(i)  (1+x)5        (ii)  (a – 2x)6      (iii)  (x + 2y)4

(iv) 
7

1 




  xx      (v)  (2x – y)5      (vi)  

6






 

x
a

a
x
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 4. Find the first four terms in the expansion of (x – 2y)10.

 5. Find the 6th term in the expansion of (1 + x)10.

 6. Find the 7th term in the expansion of 
8

2
1 





 

x
x .

 7. Find the 11th term in the expansion of (x + 2y)15.

 8. Find the term containing x6 in the expansion of (1 + x2)6.

 9. Find the term containing x9 in the expansion of 
9

2 1




 

x
x .

10. Find the coefficient of x4 in the expansion of 
10

1 




 

x
x .

11. Find the term independent of x in the expansion of

(i)  
9

2 1 




  xx       (ii)  

12

2
1






 

x
x       (iii)  

15

2
2 





 

x
x

12. Find the middle term in the expansion of

(i)  (1 + x)6        (ii)  (x – y)8          (iii)  (2x + 3y)10

13. Find the middle terms in the expansion of

(i)  (x + y)7        (ii)  
9

1 




 

x
x         (iii)  (x – 2y)11

14. If c
r
 denotes the binomial coefficient r

n c , prove that

(i) n
n

n cccc 32...............42 210 

(ii) n
n ncnccc 2 )1( )12(....................53 210 

(iii)
2

)1(
..................32

12

3

1

2
0




nn
c
c

nc
c

c
c

c
n

n

(iv) 0)1(......................32 1
321  

n
n ncccc

15. Evaluate the following by using Binomial Theorem

(i)  994           (ii)  1025            (iii)  10013

16. Show that    44
5252   is rational.

17. Using Binomial Theorem, prove that 4n – 3n – 1 is divisible by 9 for nN.

18. Using Binomial Theorem, prove that 23n – 7n  (nN) always leaves the
remainder 1 when divided by 49.
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ANSWER

1. (i)  8        (ii)  11        (iii)  16        (iv)  21

2. (i)  54322345 510105 yxyyxyxyxx 

(ii)  432234 1632248 xaxxaxaa 

(iii)  5432 322407201080810243 xxxxx 

3. (i)  5432 5101051 xxxxx 

(ii)  6542332456 641922401606012 xaxxaxaxaxaa 

(iii)  432234 1632248 yxyyxyxx 

(iv)  
753

357 17213535217
xxxx

xxxx 

(v)  54322345 1040808032 yxyyxyxyxx 

(vi)  6

6

4

4

2

2

2

2

4

4

6

6 1520156
x
a

x
a

x
a

a
x

a
x

a
x 

4. 3728910 960  ,180  ,20  , yxyxyxx 

5. 252x5    6. 10
28
x

    7.  10510
10

15 2 yxc     8.  20x6     9.  84x9

10. – 120    11.  (i)  84    (ii)  495    (iii)  5
5

15 2c

12. (i)  T
4

= 20x3    (ii)  T
5

= 70x4y4      (iii)  T
6

= 10c
5
2535x5y5

13. (i) 43
5

34
4 35T   ,35T yxyx 

(ii)
xx 126T  ,126T 65 

(iii) 656
6

11
7

565
5

11
6 2 T  ,2T yxcyxc 

15. (i)  96059601    (ii)  11040808032    (iii)  1003003001

Binomial Theorem
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CHAPTER 5

MATRICES

5.1 Introduction

In 1850, an English mathematician James Joseph Sylvester (1814-1897) used
rectangular arrangements of numbers for storing information. He gave the name matrix to
such a rectangular arrangement. Later on, other mathematicians recognised how
conveniently matrices can be used to write numerical data, system of a large number of
equations in several unknowns etc. in a compact form. Among others who have contributed
to the development of matrix theory, mention may be made of Arther Cayley (1821-1895),
William Rowan Hamilton (1805-1865), Charles Hermite (1822-1901), F.G. Frobenius
(1849-1917) and M.E.C. Jordan (1838-1922).

Having originated as mere stores of information, matrices have now found
applications not only in Mathematics but also in Physics, Chemistry, Biology, Sociology,
Economics, Engineering, Psychology, Statistics etc.

In this chapter, we shall study elementary properties of matrices and basic laws of
matrix algebra.

5.2 Definition of a Matrix

Suppose Chaoba has 7 books. We can express this information by the symbol [7]
with the understanding that the number written inside the pair of brackets, is in reference
to the number of books Chaoba possesses.

However, if Chaoba has 7 books as also 4 pens, we convey the information by [7
4] with the understanding that the first number represents the number of books and the
second, the number of pens Chaoba has.



79

Next suppose Chaoba has 7 books and 4 pens while his friend Ali has 9 books
and 5 pens. This information can be displayed in a tabular form as follows :

              Books          Pens

Chaoba 7 4

Ali 9 5

We can further shorten the display as below :













row2nd 

row1st 

59

47

1st     2nd

             column  column

Implied in this display, are the following assumptions :

(i) The entries in the first row represent the objects (books and pens) that Chaoba
possesses.

(ii) The entries in the second row represent the objects that Ali possesses.

(iii) The entries in the first column represent the number of books.

(iv) The entries in the second column represent the number of pens.

Thus, the entry in the second row and the first column, represents the number of
books Ali possesses. Each entry in the display may be interpreted similarly.

We now see how arrangement of numbers in rows and columns can be used
conveniently to represent given information. Such an arrangement of numbers is called a
matrix. A formal definition of matrix is given below :

Definition :  A rectangular array of mn numbers, arranged in m rows and n
columns, enclosed in a pair of brackets, is called a matrix of order m×n (read as m by
n) or an m×n matrix.

Each number in a matrix is called an element or entry of the matrix.

In the matrix









59

47

there are two rows and two columns. Hence its order is 2×2.

Matrices
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The matrix [7 4] has 1 row and 2 columns so that it is of order 1×2. And the

matrix 




9
7

has 2 rows and 1 column so that its order is 2×1. While specifying the order

of a matrix, the number of rows is always written first followed by the mark × and then
by the number of columns.

We use capital letters to denote matrices and small letters with two suffixes to denote
elements in specific positions.

For instance, a matrix A with m rows and n columns may be written as

      




















mnmmm

n

n

aaaa

aaaa

aaaa

.....

..........................

.....

.....

A

321

2232221

1131211

A notation of this type is known as a double suffix notation. The suffixes i and j in
the element aij, indicate the row and column in which the element occurs. Here a

ij
 may

be called the (i, j)th element of the matrix. The above matrix may also be denoted shortly
by the symbol [a

ij
].

As in the case of vectors, in the study of matrices also, numbers are usually referred
to as scalars.

Consider the matrix

       



 574

312A

Clearly A is of order 2×3 and
a

11
 = the element in the 1st row and 1st  column = (1,1)th element = 2

a
12

 = the element in the 1st row and 2nd column = (1,2)th element = 1
a

13
 = the element in the 1st row and 3rd column = (1,3)th element = 3

a
21

 = the element in the 2nd row and 1st column = (2,1)th element = 4
a

22
 = the element in the 2nd row and 2nd column = (2,2)th element = 7

a
23

 = the element in the 2nd row and 3rd column = (2,3)th element = 5

Example 1. Consider the following information about the result of a monthly test in class
X in a school :

Mathematics Science Social Science

Pass 46 39 44

Fail 4 11 6

Higher Mathematics for Class – X
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Express this information in the form of a matrix and specify its order. What
does the entry in the 2nd row and 3rd column represent ?

Solution : The given information may be stored in the following matrix :





 6114

443946A

This matrix has 2 rows and 3 columns and so it is of order 2×3.

The entry 6 in the 2nd row and 3rd column represents the number of
students failed in Social Science.

5.3 Types of Matrices

Rectangular matrix :  Any m×n matrix (where m is not necessarily equal to n) is
called a rectangular matrix.

For example, 




 153

342
 is a rectangular matrix.

In fact, any m×n matrix is a rectangular matrix whether m=n or .nm   However,,
some authors call an m×n matrix rectangular only when .nm 

Square matrix :  Any n×n matrix is called a square matrix of order n or an n-
rowed square matrix.

Thus, in a square matrix, the number of rows is equal to the number of columns.

For examples,

 





















 143

532
111

and32
41

 are square matrices of order 2 and 3 respectively..

Row matrix :  A matrix having a single row is called a row matrix.

For example,  [1 2 5] is a row matrix.

Every matrix of order 1×n, for some N,n  is a row matrix.

Column matrix :  A matrix having a single column is called a column matrix.

For example,

  
















z

y
x

is a column matrix.

The order of a column matrix is n×1, for some N.n

Matrices



82

For any matrix A=[a
ij
], the elements a

ii
 for all possible values of i, are called the

diagonal elements and the line along which they lie, is called the principal diagonal or
the leading diagonal of the matrix.

Diagonal matrix : A square matrix is said to be a diagonal matrix if all its elements
other than the diagonal elements are zero.

For example,

























000
050
002

and
300
020
001

are diagonal matrices of order 3.

Scalar matrix :  A diagonal matrix whose diagonal elements are all equal, is called
a scalar matrix.

Thus,

















300
030
003

and20
02  are scalar matrices.

Identity matrix or Unit matrix :  A diagonal matrix whose diagonal elements are
unity, is called an identity matrix or a unit matrix.

For examples,

  

















100
010
001

and10
01

  are the unit matrices of order 2 and 3 respectively..

Null matrix or Zero matrix :  A matrix all of whose elements are zero, is called
a null matrix or a zero matrix.

Examples are

          















00

00
,

000

000
 etc.

Any matrix having at least one non-zero entry is called a non-zero matrix.

Triangular matrices :  A square matrix all of whose elements below the principal
diagonal are zero, is called an upper triangular matrix.

A square matrix all of whose elements above the principal diagonal are zero, is
called a lower triangular matrix.

Higher Mathematics for Class – X
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The matrices
























253
014
001

and
000

110
342

are examples of upper triangular matrix and lower triangular matrix respectively.

5.4 Equality of Matrices

Two matrices are said to be equal if they are of the same order and their
corresponding elements are equal.

Thus, the matrices A=[a
ij
] and B=[b

ij
] are equal if

(i)   they have the same number of rows and the same number of columns and

(ii)   a
ij
=b

ij
, for all admissible values of i and j.

For example,    









yx
ba

1
52

5  if and only if

a=2,   b=5,   x=1    and   5=y.

Example 2. Let

  






 247

652A ija

Find the order of A. Also find a
13

 and a
22

. Does a
31

 exist ?

Solution : There are 2 rows and 3 columns in the given matrix A.

Hence its order is 2×3.

Here,

      a
13

= the element in the 1st row and 3rd column = 6

and  a
22

 = the element in the 2nd row and 2nd column = 4

But 31a  i.e. the element in the 3rd row and 1st column does not
exist as there is no 3rd row.

Example 3. A matrix A has 6 elements. Find all possible orders A can have. What
if A has 5 elements ?

Solution : Let us find all ordered pairs of positive integers, the product of whose
elements is 6. The possible ordered pairs are

(1, 6), (6, 1) (2, 3) and (3, 2).

Matrices
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Hence the possible orders of A are

1×6, 6×1, 2×3 and 3×2.

In case A has 5 elements, the possible orders are 1×5 and 5×1 (as
1 and 5 are the only factors of the prime number 5).

Example 4. Find the 3×3 square matrix [a
ij
] where .

2
ji

aij


Solution : Here

,
2
3

2
21,1

2
11

1211  aa 2
2

31
13 a

,2
2

22,
2
3

2
12

2221  aa
2
5

2
32

23 a

,
2
5

2
23,2

2
13

3231  aa 3
2

33
33 a

   the required matrix =
















333231

232221

131211

aaa

aaa

aaa

=





















3
2
52

2
52

2
3

2
2
31

Example 5. Find x, y, z, p if   








xzpy
zyx

22
2

 = 





42
63

.

Solution : Equating the corresponding elements of the two given equal matrices,
we get

     x = 3  ............... (1)

2y + z = 6  .................(2)

y + 2p = 2 .................(3)

and z + 2x = 4 .................(4)

From (4), z = 4 –2x

  = 4 – 6,   using (1)

= –2

Higher Mathematics for Class – X
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From (2),
2

6 zy 

  
2

26 (  z = – 2)

= 4

From (3), )2(
2
1 yp 

  = )42(
2
1  (  y = 4)

  = –1

Thus, x = 3, y = 4,  z = –2 and p = –1.

––––––––

EXERCISE 5.1

1. Consider the following information regarding the number of boys and girls reading in
class X in three schools A, B and C.

Schools No. of boys No. of girls

A 26 31

B 35 27

C 42 22

Represent the information in the form of a 3×2 matrix. What does the element in the
second row and first column represent ?

2. Let

 
























122

837

646

321

ija

Find the order of the matrix. Find 4241333223 and,,, aaaaa . Does 24a  exist ?

Matrices
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3. State the type of the following matrix :

(i) 







43

21
(ii)  








30

02
(iii)  








30

12

(iv) 







3

1
(v)   12 (vi)  

















00

00

00

(vii)
















154

032

001

(viii)  
















200

020

002

(ix)  
















200

020

002

4. A matrix A has 24 elements. Find all possible orders A may have.

If A has 7 elements, what are the possible types A can be of ?

5. Find the 3×3 matrix  [a
ij
] where

(i) )(2 jiaij  (ii)  jiaij  2 (iii)  
3
2 ji

aij


(iv)
2

)( 2ji
aij

 (v)  132  jiaij (vi)  ji
ija  )1(

6. Is the following equality possible for any values of x, y, z ?

   












65
43

22 xyzx
zyyx

7. Find a, b, c, d when

   












23
45

dbca
cbba

8. Find the values of x, y, z if

(i)







































4

5

6

xz

zy

zyx

   (ii) 







 

03
41

02
2

z
yxyx

   (iii)





























8
7
5

xz
zy
yx

Higher Mathematics for Class – X
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ANSWER

1.












2242
2735
3126

,  the number of boys reading class X in school B.

2. 4×3,   a
23

=–6,   a
32
=3,   a

33
=8,   a

41
=–2,   a

42
=–2;   a

24
 does not exist.

3. (i)  square matrix (ii)  diagonal matrix (iii)  upper triangular matrix

(iv) column matrix (v)  row matrix (vi)  zero matrix

(vii) lower triangular matrix   (viii)  diagonal matrix   (ix)  scalar matrix.

4. 1×24,  2×12,  3×8,  4×6,  6×4,  8×3,  12×2,   24×1; a row matrix or a column
matrix.

5. (i)


















024

202

420

(ii)  
















987

765

543

(iii)  





















3
3
7

3
5

3
82

3
4

3
7

3
51

(iv)





















0
2
12

2
10

2
1

2
2
10

(v)  




















214

412

630

(vi)  





















111

111

111

6. No.

7. a = 2, b = 3, c = 1,  d =1

8. (i)  x = 1,  y = 2,  z = 3      (ii)  
2
3,2,3  zyx     (ii)  5,2,3  zyx

––––––––––

Matrices
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5.5 Operations on Matrices

(a)  Addition of matrices

Let A and B be two matrices of the same order. Then the sum of A and B, denoted
by A+B is defined as the matrix, each element of which is the sum of the corresponding
elements of A and B.

For example, if   





232221

131211A aaa
aaa

 and 





232221

131211B bbb
bbb

then













232322222121

131312121111BA
bababa

bababa

The sum of two matrices of different orders is undefined. In fact, the sum A+B of
two matrices A and B is defined only when they have the same number of rows and the
same number of columns. In such a case, the matrices A and B are said to be
conformable for addition.

(b) Multiplication of a matrix by a scalar

For 










31

21
A  let us calculate A + A. Clearly












62

42
AA

It is natural to denote A+A by 2A. We observe that each element of 2A is 2 times
the corresponding element of A.

Here we define the product kA for any scalar k (integral or not) and for any matrix
A as follows :

If k is a scalar and A, a matrix, then the product kA is defined as the matrix
obtained on multiplying each element of A by k.

For example, if 









321

321A
bbb

aaa
, then for any scalar k,

        









321

321A 
kbkbkb

kakaka
k

Higher Mathematics for Class – X
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This operation is often called the multiplication of a matrix by a scalar.

If k=1, clearly kA=A and if k = –1, then kA= –A where –A is the matrix each
element of which is the negative of the corresponding element of A. The matrix      –A
is called the negative of A.

(c) Subtraction of matrices

If A and B are two matrices of the same order, then the difference A–B is defined
to be the matrix A+(–B).

Every element of A–B is obtained by subtracting the corresponding element  of B
from the corresponding element of A.

For example,  if 









232221

131211A
aaa

aaa
 and 










232221

131211B
bbb

bbb
 then













232322222121

131312121111BA
bababa

bababa

Since addition of matrices is based directly on the addition of their elements which
are numbers and since addition of numbers is commutative and associative, therefore it
follows that

A + B = B + A

and (A + B) + C = A + (B + C)

whenever A, B, C are matrices of the same order.

Thus, matrix addition is commutative as well as associative.

Further, the distributive law

k(A + B) = kA + kB

holds when k is any scalar and A, B are matrices of the same order.

If A is any matrix and O is the null matrix of the same order, then it is easy to see
that

A + O = A and A – A = O

Example 6. Verify the associative law of matrix addition for the matrices

,
43

21
A 








   










02

14
B  and 










32

51
C .

Matrices
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Solution :  We have































0423

1241

02

14

43

21
BA

      = 







45

35

 







 32

51
45
35CB)(A

       = 





77
86

 .................... (1)

Again, 











 34

65
32
51

02
14CB

 







 34

65
43
21C)(BA

 = 





77
86

 ....................(2)

From (1) and (2),  we obtain

(A+B)+C= A+(B+C)

Hence verified.

Example 7.  Find a matrix C such that A+B+C=O   (O denotes a null matrix) where

  



 43

12A  and 






 52

31B .

Solution :  Here,  










 52

31
43
12BA

 






 5423

3112

 





 15
41
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By the given condition

OCBA 

     OB)(AC 

  B)(A 

  












15

41

Example 8.  If  





 430
321A  and ,301

212B 






  find 3A+2B.

Solution :  Here,













 1290
963

430
32133A

   and 













 602

424
301
21222B

    





















602

424

1290

9  6   3
2B3A

    






 6120920

492643

    











692

587

Example 9.  Find the matrices A and B, if





 12

37BA  and 





 70
51BA

Solution :  Here,





 12

37BA  ............ (1)

and 





 70
51BA  ............(2)

Adding (1) and (2)

Matrices
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















 62

88
70
51

12
372A

   











 31
44

62
88

2
1A

       Then B = A – A + B

= A –(A–B)













 70
51

31
44

    [using  (2)]





  41

13

Example 10.  Find x and y such that















 12

13
2
3

3
2 yx

Solution :  We have















 12

13
2
3

3
2 yx

 













 12

13
2
3

3
2

y
y

x
x

 













12
13

23
32

yx
yx

Comparing elements in corresponding positions, we get

1332  yx    ........... (1)

and 1223  yx  .......... (2)

Adding (1) and (2),

1 yx      ........... (3)

Subtracting (2) from (1),

2555  yx

 5 yx       ............ (4)

Solving (3) and (4), we obtain  x = 2,  y = –3.
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(d) Multiplication of matrices

Let A and B be two matrices such that the number of columns of A is equal
to the number of rows of B. Then the matrices A and B are said to be conformable for
the product AB. And the product AB is defined only when A and B are conformable for
this product.

As an example, let us take














333231

232221

131211
A

aaa
aaa
aaa

 and 













3231

2221

1211
B

bb
bb
bb

Here, the number of columns of A=3= the number of rows of B. So A and B are
conformable for the product AB.

The product AB is defined as the matrix





















323322321231313321321131

322322221221312321221121

321322121211311321121111

babababababa

bababababbba

babababababa

To get the product AB, we proceed by taking the 1st row of A and the 1st column
of B and obtain the product of each element in the row with the corresponding element
in the column. The sum of the products so obtained, is called the inner product of the
row and column under consideration. We take this inner product as the element in the
1st row and the 1st column i.e. (1,1)th element of the product AB. Next we form the
inner product of the first row of A and the second column of B and take this product as
the (1,2)th element of the product AB. In general, we find the inner product of the i th
row of A and the j th column of B and take it as the (i,j)th element of the product AB.
In this way, we compute each element of the product AB.

We refer to this process of finding the product AB as ‘‘row by column rule’’.

Here, observe that A is 3×3 matrix and B, 3×2 matrix and the product AB is 3×2
matrix (where 3 indicates the number of rows of A and 2 indicates the number of columns
of B). In general, if A is m×n matrix and B, n×p matrix, then the product AB is an
m×p matrix.

Two given matrices A and B conformable for the product AB, may not be
conformable for the product BA and even if they are, BAAB   in general. This means
that matrix multiplication is not commutative.

Matrices
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For example, if 









31

21
A  and ,

5

4
B 








  then







































19

14

154

104

5

4

31

21
AB  whereas the product

BA is undefined.

Again, if 









31

21
A  and ,

15

14
B 








  then






























31154

21104

15

14

31

21
AB

   









419

314

and 




























31015

3814

31

21

15

14
BA

= 







136

115

so that BAAB  .

When A is a square matrix, we can form the product A×A which we denote by
A2. Inductively we can form the products denoted by A3, A4 etc.

Again if A, B, C are matrices such that A and B are conformable for the product
AB and B and C are conformable for the product BC, then it can be shown that

(AB)C = A(BC).

It means that matrix multiplication is associative.

It may also be shown that the distributive law,

A(B+C) = AB + AC

holds for matrices A, B, C provided they are conformable for the products and
the sum.

Higher Mathematics for Class – X



95

Example 11. If A is any square matrix of order 3 and I, the unit matrix of the same
order, show that AI=IA=A.

Solution : Let


















333

222

111

A

cba

cba

cba

Then


































100

010

001

AI

333

222

111

cba

cba

cba

   






















1.0.0.0.1.0.0.0.1.

1.0.0.0.1.0.00.1.

1.0.0.0.1.0.0.0.1.

333333333

222222.222

111111111

cbacbacba

cbacbacba

cbacbacba

   A

333

222

111



















cba

cba

cba

and

































333

222

111

100

010

001

IA

cba

cba

cba























333

222

111

000000

000000

000000

cba

cba

cba

A

333

222

111



















cba

cba

cba

Thus, AI = IA = A.

Matrices
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Example 12. Form the products AB and BA when

(i) A= [3  2  1] and 


















3

2

1

B

(ii)

















01

10

01

A  and 









120

021
B

Solution :

(i) 
 

















3

2

1

1]2[3AB

   = [3×1+ 2×2+1×3]

   = [10]

 123

3

2

1

BA








































132333

122232

112131


















369

246

123

(ii) 

























120

021

01

10

01

AB
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





































021

120

021

000201

102000

000201



























01

10

01

120

021
BA

 




















21

21

020100

020001
.

Example 13. If  










21

11
A  and ,

11

43
B 










  show that

    B)(AB)(ABA 22  .

Solution : We have
































4121

2111

21

11

21

11
A2

   






 


31

10
































1413

41249

11

43

11

43
B2

   









52

813

 


























 


21

913

52

813

31

10
BA 22

Again, 






























30

54

11

43

21

11
BA

Matrices
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































12

32

11

43

21

11
BA

 





















12

32

30

54
B)(AB)(A

 











3060

512108

  






 


36

1718
.

Thus, B)(AB)(ABA 22  .

Example 14. Find a 2×2 matrix A such that

   






 










 83

611

21

32
A .

Solution : Let











dc

ba
A

Then 






 


















83

611

21

32

dc

ba

 






 












83

611

232

232

dcdc

baba

 112 ba .............. (1)

623  ba .............. (2)

32  dc .............. (3)

and 823  dc .............. (4)

From (i) and (2), we get  a=–4,  b= –3
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And from (3) and (4), we get    c=2,  d= –1

Hence 











12

34
A .

Example 15. If    ,
32

21
A 








  prove that AA2–4A=I,

where I is the unit matrix of order 2.

Solution : Here,



















32

21

32

21
A2

   




















138

85

9462

6241

and 


















128

84

32

21
44A

 


















128

84

138

85
4AA2

        









10

01

  = I.

Example 16. Solve the matrix equation :


























 4

7

23

32

y

x
.

Solution : We have




























 yx

yx

y

x

23

32

23

32
.

Matrices
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        the equation becomes





















4

7

23

32

yx

yx

Equating elements in corresponding positions, we obtain

732  yx  .............. (1)

and 423  yx  .............. (2)

Solving (1) and (2), we find that x=2 and y=1.

Example 17. Show that for the non-zero matrices














11

11
A  and 










32

32
B ,

(i)  AB=O and (ii) OBA  .

Solution : We have

































3322

3322

32

32

11

11
AB

    O
00

00









 .

and 































3232

3232

11

11

32

32
BA

    O
11

11












 .

Remark : There are non-zero matrices A and B (as in the above example) such
that AB=O.

EXERCISE 5.2

1. Find  2A – 3B when

(i) 






 


43

12
A  and 







 


32

21
B

Higher Mathematics for Class – X
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(ii) 









234

432
A  and 










213

321
B

(iii)















 


154

302

211

A  and 















 


013

321

122

B

(iv)

























2
94

2
7

3
2
52

2
5

2
2
3

A
 and 

























3
72

3
5

3
5

3
41

1
3
2

3
1

B

2. Find a matrix C such that

(i) 2A + B + C = 0  where 






 


32

21
A  and 












33

12
B

(ii) 2A – 3B + C = 0  where 









53

41
A  and 










31

21
B

(iii) A + B + 2C = 0  where 









10

43
A  and 













52

21
B

(iv) 3A – 2B + C = 0  where 









24

31
A  and 











12

23
B

(v) 2A – 5B + 3C = 0  where





















03

21

31

A  and 


















36

21

04

B

3. Find the matrices A and B if

(i) 









70

43
BA  and 










36

25
BA

Matrices



102

(ii) 









81

33
B2A  and 











74

03
B2A

(iii) 









207

784
B32A  and 










858

791
B23A

4. Find the values of x and y if

(i) 

























7

3

2

1

3

5
yx

(ii) 


























103

54

21

1
3

0

11
2

y

x

(iii) 






 




















24

6

41

5

21
3

yxxyx

5. If























113

402

111

A ,  

















524

321

412

B

and






















213

312

121

C ,

find (i) 2A + B–C   (ii)  A + 2B – 2C.

6. Compute the following products

(i)  

















1

2

2

321 (ii)   321

1

2

2


















(iii)






























11

21

23

232

111
(iv)  































232

111

11

21

23
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(v) 
















 

ab

ba

ab

ba
(vi)  
















 321

132

32

21

(vii)





































43

31

21

243

210

123

(viii)  



































 221

421

136

012

654

321

(ix)  
































z

y

x

cfg

fbh

gha

zyx (x)  
















































12

24

31

43

21

152

243

111

7. If    


















000

100

010

A  and 


















010

001

000

B , show that

A2B + BA2 = A.

8. If     ,
21

10   
A 










   









32

21
B  and 










11

12
C ,

verify that  (i)  (AB)C = A(BC)

   (ii)  A(B+C) = AB + AC.

9. If 










31

21
A  and  










01

12
B ,  verify that

222 B2ABAB)(A  .

10. If 


















02

13
B,

22

11
A  and 











23

32
C , show that

AB=AC  although CB  .

11. Show that BAAB   when

(i) 









43

21
A  and 













23

12
B .
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(ii)


















011

010

321

A  and 





















321

110

011

B .

12. If 









11

01
A ,  show that

A3 – 2A2 + A = 0.

13. If 









43

12
A ,  show that   AA2 – 6A + 5I = 0.

where I is the unit matrix of order 2.

14. If 










42

21
A ,  verify that   AA2 – 5A + 8I = 0.

15. If



















012

311

101

A   find AA2 – 3A + 2I.

16. If 









01

00
A ,  show that A3I)AI( 233 baaba 

where I is the 2×2 unit matrix.

17. If 









25

12
A ,  show that AA2 – 4A – I = 0. Hence

find a matrix B such that  AB = I.

18. If 












01

10
A ,  











11

22
B  and 












69

46
C , show that

(i) A2 = I      (ii)  B2 = B     (iii)  C2 = 0.

19. If 









35

12
A ,  find a matrix B such that AB = I.
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20. If





















123

032

111

A ,  



















11

20

41

B  and  










42

13
C ,

verify that  (AB)C = A(BC).

21. If 










14

32
A , find k such that  AA2–kA+14I=0.

22. Find x and y, when

(i) 
























 2

9

43

52

y

x

(ii) 
























7

15

54

73

y

x

(iii) 



























11

7

43

21

y

x
.

ANSWER

1. (i) 







10

41
(ii)  











231

101
  (iii)  






















271

361

124

 (iv) 
















222

111

222

2. (i) 







 91

30
  (ii)  











13

25
     (iii)  







 
21

32
    (iv)  











416

53

(v)

















58

21

26
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3. (i) ,
53

34
A 








   












23

11
B

(ii) ,
32

21
A 








  













23

11
B

(iii) ,
432

211
A 








   













221

132
B

4. (i) 2,1  yx    (ii)  2,2  yx    (iii)  1,3  yx

5. (i)





















917

833

435

(ii)  





















1555

460

737

6. (i) [1]         (ii)  

















321

642

642

     (iii)  







 85

51

(iv)





















143

375

731

(v)  











22

22

0

0

ba

ba
(vi)  








 701

774

(vii)

















21

54

42

(viii)  


















6415

41035

1111

(ix)  ]222[ 222 gzxfyzhxyczbyax      (x)
















36

612

510

15.




















125

535

212

      17.   












25

12
B      19. 













25

13
B 21.  k = 3

22. (i) 1,2  yx      (ii)  3,2  yx      (iii)  .5,3  yx
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5.7 Transpose of a Matrix

The matrix obtained from a given matrix A, by changing the rows into columns and
vice versa, is cal led the transpose of A and is denoted by A ' or A t.

For example, the transpose of 
















65

43

21

 is 







642

531

It is readily seen that if A is an m×n matrix, then its transpose A' is an n×m matrix.
Further, the element in the ith row-j th column of A i.e. the (i,j)th element of A, becomes
the (j,i)th element of A'.

Theorem 5.1  For any matrix A, (A')'=A.

Proof :  Let the order of A be m×n. Then A' will be an n×m matrix and hence (A')'
will be an m×n matrix. Thus A and (A')' are matrices of the same order.

Further, (i,j)th element of (A')' = (j,i)th element of A'

     = (i,j)th element of A

It follows that (A')'=A (both being of the same order and corresponding
elements being equal).

Theorem 5.2  If A and B are matrices of the same order, then (A+B)'=A'+B'.

Proof :  If A and B are of order m×n, then both (A+B)' and A'+B' are of order n×m.
Thus (A+B)' and A'+B' are matrices of the same order.

Further, (i,j)th element of (A+B)' = (j,i)th element of A+B

= (j,i)th element of A+(j,i)th element of B

= (i,j)th element of A'+(i,j)th element of B'

= (i,j)th element of (A'+B')

Hence (A+B)' = A'+B'

Theorem 5.3  If k is a scalar, then (kA)' =kA' for any matrix A.

Proof :  If A is of order m×n, then both the matrices (kA)' and kA' are of the same
order n×m.

Matrices
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Now, (i,j)th element of (kA)' = (j,i)th element of kA

    = k×(j,i)th element of A

    = k×(i,j)th element of A'

    = (i,j)th element of kA'

Thus (kA)' and kA' are matrices of the same order whose corresponding
elements are equal. Hence (kA)'=kA'.

Theorem 5.4  If A and B are conformable for the product AB, then (AB)'=B'A'.

Proof :  If A is m×n matrix and B, n×p matrix, then AB is m×p matrix so that (AB)'
is p×m matrix.

Again B' is p×n matrix while A' is n×m matrix so that the product B'A' is
p×m matrix.

Hence (AB)' and B'A' are matrices of the same order.

Now, (i,j)th element of (AB)' = (j,i)th element of AB

= inner product of jth row of A and ith column
of B

= inner product of ith column of B and jth row
of A

= inner product of ith row of B' and jth
column of A'

= (i,j)th element of B'A'

Thus (AB)' and B'A' are matrices of the same order and their corresponding
elements are equal. Hence (AB)'=B'A'.

Remark : Here, by the inner product of ith row of A and jth column of B we mean the
sum of the products formed by multiplying each element in the ith row of A by
the corresponding element in the jth column of B. For example, if [a

1
 b

1
 c

1
] is

a row and 
















2

2

2

c

b

a

 is a column, then their inner product is the sum

.212121 ccbbaa 
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5.8 Symmetric and Skew-symmetric Matrices

A square matrix A=[a
ij
] is said to be (i) symmetric if a

ij
=a

ji

(ii) skew-symmetric if a
ij
=–a

ji

For examples,





















453

502

321

 and 
















cfg

fbh

gha

are symmetric matrices, whereas






















053

502

320

 and 



















0

0

0

cb

ca

ba

are skew-symmetric matrices.

Obviously, a square matrix A is symmetric if and only if it coincides with its transpose
i.e. A'=A and skew-symmetric if and only if A'=–A.

For a skew-symmetric matrix A=[a
ij
], we should have by definition a

ii
=–a

ii
 (for

any i) i.e. a
ii
=0. Thus, every diagonal element of a skew-symmetric matrix is necessarily

zero.

Theorem 5.5  Every square matrix can be expressed in one and only way, as a sum of
symmetric matrix and a skew-symmetric matrix.

Proof :  Let A be a given square matrix and let

)A(A
2
1B   and )A(A

2
1C 

Then )A(A
2
1A)(A

2
1B 



 

 =   A)(A
2
1)(AA

2
1 

 = )A(A
2
1 

 = B
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and   C' =    






  AA

2
1AA

2
1

=   A)A(
2
1)A(A

2
1 

)A(A
2
1 

= – C.

Thus, B is symmetric and C is skew-symmetric.

Further, )A(A
2
1)A(A

2
1A 

   = B+C

In this way, A has been expressed as a sum of a symmetric matrix and a skew-
symmetric matrix.

Let A=P+Q be another such representation of A,

where P is symmetric and Q is skew-symmetric.

Then we have

)Q(PA 

= P'+Q'

= P–Q (   P'=P while Q' = – Q)

So,  A+A' = (P+Q) + (P–Q)=2P

 B)A(A
2
1P 

And 2QQ)(PQ)(PAA 

 C)A(A
2
1Q 

Hence, the representation A=B+C is unique.

Example 18. Find the transpose of

(i) [2  3  –5] (ii)  







 31

12

(iii)  







 412

321
(vi)  




















254

432

101
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Solution : (i)   




















5

3

2

532 (ii)  






 









 31

12

31

12

(iii)  


























43

12

21

412

321
(iv)  









































241

530

421

254

432

101

Example 19. If 






 


31

12
A  and 











12

21
B , verify that

(i) A)'(A'  (ii)  BA)B(A 

(iii) 5A'(5A)' (iv) AB(AB) 

Solution : (i) A
31

12

31

12
)(A 







 













(ii) 




















23

13

1321

2112
B)(A

            









21

33

and 




































 


12

21

31

12

12

21

31

12
BA

     











1321

2112

     









21

33

Hence  (A+B)' = A'+B'.
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(iii)









 































 


31

12
5

31

12
5

155

510

155

510
(5A)'

     = 5A'.

(iv) 




































 


17

50

3261

1422

12

21

31

12
AB

 










15

70
(AB)'






























 












31

12

12

21

31

12

12

21
A'B'

    





















15

70

3214

6122

Hence (AB)' = B'A'.

Example 20. If A be a square matrix, prove that AA' and A'A are both
symmetric matrices.

Solution : Let AA'= B and A'A=C

Then )A(AB 

= (A')A'        AB)(AB 

= AA'          A)'(A' 

= B

 B is symmetric

Again, C'= (A'A)'

= A'(A')'

= A'A

= C

    C is symmetric

Thus, both AA' and A'A are symmetric for any square matrix A.
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Example 21. If A and B be symmetric matrices of the same order, show that
AB – BA is a skew-symmetric matrix.

Solution : Let C = AB – BA

Then BA)'(ABC' 

= (AB)' – (BA)'    (P–Q)' = P'–Q'

= B'A' – A'B'    (PQ)' = Q'P'

= BA – AB    A'=A  B'=B

= –AB + BA

= – (AB–BA)

= –C

Hence C is skew symmetric.

EXERCISE 5.3

1. Write the transpose of the following matrix :

(i) 







54

32
(ii)  


















14

43

52

(iii)  






 
410

312

(iv)  
















321

321

321

ccc

bbb

aaa

(v)  














 

321

046

251

2. Verify that (A+B)' = A'+B', when

(i) 









34

21
A  and 










20

13
B        (ii)  


















34

23

12

A  and 


















41

02

11

B

(iii)


















433

312

111

A  and 






















024

231

112

B
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3. Verify that (AB)' = B'A', when

(i)































26

01

13

B,
325

410
A

(ii) ,
213

211
A 











   


















03

32

21

B

(iii) ,
213

211
A 











   


















30

21

10

B

(iv) ,

53

31

41

A




















   












201

132
B

(v) ,
52

43
A 








   













211

101
A

4. If 






 


43

12
A  and 










32

01
B , verify the following:

(i) A)'(A'      (ii)  B'A'B)'(A       (iii)  (2A)' = 2A'    (iv)  (AB)'=B'A'

5. Express the following matrix as a sum of a symmetric matrix and a skew-symmetric
matrix.

(i) 







65

32
          (ii)  





















321

432

111

        (iii)  




















105

243

321

6. For any square matrix A, prove that both the products AA' and A'A are symmetric.

7. If A and B are symmetric matrices of the same order, show that

(i) A+B is symmetric. (ii)   A–B is symmetric.

(iii) AB+BA is symmetric. (iv)  AB–BA is skew-symmetric.
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8. Show that the matrix ABA' (when A, B are square matrices of the same order) is
symmetric or skew-symmetric according as B is symmetric or skew-symmetric.

9. If A and B are symmetric matrices of the same order, show that AB is symmetric if
and only if AB=BA.

ANSWER

1. (i) 







53

42
(ii)  








 145

432
(iii)  


















43

11

02

(iv)  
















333

222

111

cba

cba

cba

(iv)  
















 302

245

161

5. (i) 






 









01

10

64

42
     (ii)  



















































010

10
2
1

0
2
10

331

33
2
3

1
2
31

(iii)















































 011

10
2
5

1
2
50

114

14
2
1

4
2
11

–––––––––––
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CHAPTER 6

FACTORISATION (Harder Type) AND
IDENTITIES (Conditional and Unconditional)

6.1 Introduction

We have learnt how simple algebraic expressions of types a2 – b2, a3 + b3,
a3 – b3, ax2 + bx + c, etc. are resolved into factors.  Here we shall discuss factorisation
of a harder type. But, factorisation of expressions of the forms :  a3 + b3 + c3 – 3abc,
a2(b – c) + b2(c – a) + c2(a – b), etc. will not be considered as they are discussed in the
Mathematics (general course) for Class X.  We may however use the results.
For occasional reference, the following results are given :

(i) a2 – b2 = (a + b) (a – b)

(ii) a3 + b3 = (a + b) (a2 – ab + b2)

(iii) a3 – b3 = (a – b) (a2 + ab + b2)

(iv) x2 + (p + q)x + pq = (x + p) (x + q)

(v) a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)

(vi) a2 (b – c) + b2 (c – a) + c2 (a – b)
= bc (b – c) + ca (c – a) + ab (a – b) = – (b – c) (c – a) (a – b)

(vii) a (b2 + c2) + b (c2 + a2) + c (a2 + b2) + 2abc
= a2 (b + c) + b2 (c + a) + c2 (a + b) + 2abc
= bc (b + c) + ca (c + a) + ab (a + b) + 2abc = (b + c) (c + a) (a + b)

(viii) a (b2 + c2) + b (c2 + a2) + c (a2 + b2) + 3abc
= a2 (b + c) + b2 (c + a) + c2 (a + b) + 3abc
= bc (b +c) + ca (c + a) + ab (a + b) + 3abc = (a + b +c) (bc + ca + ab)
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(ix) (a + b + c)3 – a3 – b3 – c3 = 3(b + c) (c + a) (a + b)

(x) 2b2c2 + 2c2a2 + 2a2b2 – a4 – b4 – c4 = (a + b + c) (a + b – c)
     (b + c – a) (c + a – b)

6.2 Factorisation by Trial

The factor theorem on polynomials states that ‘A polynomial f (x) is exactly
divisible by (x – a) if and only if f (a) = 0’.  We may, very well, use this theorem in
resolving polynomials into factors.  Given a polynomial f (x), we first find by
inspection suitable value or values of x for which f (x) vanishes.  If f (x) vanishes
for a value, say a of x then the terms of f (x) may be grouped into parts each of
which is divisible by x – a  and the factor x – a be taken common.  In this way, we
find a polynomial g(x) of degree one less than that of f (x), such that f (x) = (x – a)
g(x).  We next proceed to factorise g(x) by the same process or any other process known
to us.  The process is illustrated in the following examples.

Example 1. Factorise x3 – 7x2 + 14x – 8

Solution : Let f (x) = x3 – 7x2 + 14x – 8

Then, f (1) = 1 – 7 + 14 – 8 = 0 and so x – 1 is a factor of f (x).

Now we write, by grouping the terms into parts divisible by x – 1;

and then take out (x – 1) as a factor :

f (x) = x3 – x2 – 6x2 + 6x + 8x – 8

= x2 (x – 1) – 6x (x – 1) + 8 (x – 1)

= (x – 1) (x2 – 6x + 8)

= (x –1) (x – 2) (x – 4)

(Here x2 – 6x + 8 being a quadratic expression, is factorised by the
usual method.)

[ Here, the factorisation can also be effected by grouping the terms
as x3 – 8 – (7x2 – 14x), (Sec §6.5)]

Example 2. Resolve into factors, x4 – 4x3 + 5x2 – 4x + 4.

Solution : Let f (x) = x4 – 4x3 + 5x2 – 4x + 4.  Then

f (1) = 1 – 4 + 5 – 4 + 4  0

f (–1) = 1 + 4 + 5 + 4 + 4  0
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f (2) = 16 – 32 + 20 – 8 + 4 = 0

So, x – 2 is a factor ; we now group the terms into parts each of
which is divisible by x – 2 ; and then take out (x – 2) as a factor.

f (x) = x4 – 2x3 – 2x3 + 4x2 + x2 – 2x – 2x + 4

= x3 (x – 2) – 2x2(x – 2) + x (x – 2) – 2(x – 2)

= (x – 2) (x3 – 2x2 + x – 2)

Writing g(x) =  x3 – 2x2 + x – 2, we find g(2) = 0

and so g(x) = x3 – 2x2 + x – 2 = x2 (x – 2) + (x – 2)

 = (x – 2) (x2 + 1)

Hence, the given expression = (x – 2)2 (x2 + 1).

(Here the quadratic factor x2 + 1 is not factorisable into real linear
factors.)

Remarks : (i)  If the sum of coefficients in any polynomial f (x) is zero, then
f (1) = 0 and hence x – 1 is a factor of f (x).

(ii)  If the sum of coefficients of odd powers of x in f (x) is equal to
the sum of the remaining coefficients, then f (–1) = 0 and hence x + 1
is a factor of f (x).

Example 3.  Resolve into factors x4 + 5x3 + 5x2 – 5x – 6.

Solution : The sum of the coefficients of the polynomial = 1 + 5 + 5 –5 – 6 = 0

Hence x – 1 is a factor and so grouping the terms into parts each of
which is divisible by x – 1, we have

the given expression = x4 – x3 + 6x3 – 6x2 + 11x2 – 11x + 6x – 6

= x3 (x – 1) + 6x2 (x – 1) + 11x (x – 1) + 6 (x – 1)

= (x – 1) (x3 + 6x2 + 11x + 6)

Further, in the polynomial x3 + 6x2 + 11x + 6, the sum of the
coefficients of odd powers of x is 1 + 11 = 12 which is equal to the
sum of the remaining coefficients.  Hence x + 1 is a factor. Thus,

x3 + 6x2 + 11x + 6 = x3 + x2 + 5x2 + 5x + 6x + 6

= x2 (x + 1) + 5x (x + 1) + 6 (x + 1)
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= (x + 1) (x2 + 5x + 6)

= (x + 1) (x + 2) (x + 3)  (on factorising the quadratic
     polynomial by usual method)

   the given expression = (x – 1) (x + 1) (x + 2) (x + 3)

6.3 Factorisation of Reciprocal Expressions

A polynomial of degree n in x is said to be in its complete form if it involves all
powers xr of x for 0rn.  For example, the polynomial x4 – 3x3 + x2 – 5x – 2 is in
complete form.  The polynomial x4 + x2 + 5x – 2 is not in its complete form but may be
written in complete form as x4 + 0.x3 + x2 + 5x – 2.

Definition : A complete polynomial is said to be a reciprocal or recurring
expression if the coefficients of the terms equidistant from the
beginning and the end are equal (the terms being in descending or
ascending order of their degrees).

For example, x6 – 3x5 + 5x4 + x3 + 5x2 – 3x + 1 is a reciprocal expression
whereas x5 + 3x3 + x2 + 3x + 1 is not.

A reciprocal expression of even degree can be factorised by grouping terms with
equal coefficients.  The process is illustrated in the following examples.

Example 4. Factorise x4 + 3x3 + 4x2 + 3x + 1.

Solution : The expression is a reciprocal expression of even degree.  So, the
given expression = (x4 + 1) + (3x3 + 3x) + 4x2

= {(x2 + 1)2 – 2x2} + 3x (x2 + 1) + 4x2

= (x2 + 1)2 + 3x (x2 + 1) + 2x2

= y2 + 3xy + 2x2 where y = x2 + 1

= y2 + xy + 2xy + 2x2

= y (y +x) +2x (y + x) = (y + x) (y + 2x)

= (x2 + x +1) (x2 + 2x + 1)  (restoring value of y)

= (x + 1)2 (x2 + x + 1)

Example 5. Factorise 2x4 – 5x3 + 4x2 – 5x + 2.

Solution : The given expression = (2x4 + 2) – (5x3 + 5x) + 4x2

= 2(x4 + 1) – 5x (x2 + 1) + 4x2
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= 2{(x2 + 1)2 – 2x2} – 5x (x2 + 1) + 4x2

= 2(x2 + 1)2 – 5x (x2 + 1)

= (x2 + 1) {2(x2 + 1) – 5x}

= (x2 + 1) (2x2 – 5x + 2)

= (x2 + 1) (2x2 – 4x – x + 2)

= (x2 + 1) {2x (x – 2) – (x – 2)}

= (x2 + 1) (x – 2) (2x – 1)

A reciprocal expression of odd degree in x has in general (x + 1) as
a factor (for, the expression vanishes when x = –1).  Dividing the
expression by x + 1, we obtain a quotient which is a reciprocal
expression of even degree, and which may be factorised by grouping
terms with equal coefficients.

Example 6. Factorise 2x5 + 3x4 – 5x3 – 5x2 + 3x + 2.

Solution : The expression vanishes when x = –1 and so x + 1 is a factor.

Given expression = 2x5 + 2x4 + x4 + x3 – 6x3 – 6x2 + x2 + x + 2x + 2

=

= (x + 1) (2x4 + x3 – 6x2 + x + 2)

= (x + 1) (2x4 + 2 + x3 + x – 6x2)

= (x + 1) {2 (x4 + 1) + x (x2 + 1) – 6x2}

= (x + 1) {2 (x2 + 1)2 + x (x2 + 1) – 10x2}

Now, 2 (x2 + 1)2 + x (x2 + 1) – 10x2 = 2y2 + xy – 10x2, where y = x2 + 1

= 2y2 + 5xy – 4xy – 10x2

= y (2y + 5x) – 2x (2y + 5x)

= (y – 2x) (2y + 5x)

= (x2 – 2x + 1) (2x2 + 5x + 2) (restoring the value of y)

= (x – 1)2 (2x2 + 4x + x + 2)

= (x – 1)2 (2x + 1) (x + 2)
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Hence, the given expression = (x + 1) (x – 1)2 (2x + 1) (x + 2).

6.4 Factorisation of a polynomial expression in which the
coefficients of the terms equidistant from the beginning and end
are equal in magnitude but opposite in sign

If such an expression in x is of odd degree, the sum of coefficients will be
zero and hence it has x – 1 as a factor.  Division by x – 1 gives as quotient a
reciprocal expression of even degree and this can be factorised by using the method
discussed already.  And if the degree of the expression is even, say 2m, then the
coefficient of xm is zero and so as can be seen both x – 1 and x + 1 are its factors.
Division by x2 – 1 will give as quotient a reciprocal expression of even degree, which
can further be factorised.

Example 7. Resolve into factors with integral coefficients 15995 2345  xxxxx

Solution : As the sum of the coefficients is zero, x – 1 is a factor of the expression.

On division by x – 1 we see that, the expression

= (x – 1) (x4 – 4x3 + 5x2 – 4x + 1)

Further, x4 – 4x3 + 5x2 – 4x + 1 = (x4 + 2x2 + 1) – 4x (x2 + 1) + 3x2

= (x2 + 1)2 – 4(x2 + 1) x + 3x2

= y2 – 4yx + 3x2, where y = x2 + 1

= (y – x) (y – 3x)

= (x2 – x + 1) (x2 – 3x + 1)

   the given expression = (x – 1) (x2 – x + 1) (x2 – 3x + 1)

Note : In this section, we are concerned with factors involving integral
coefficients only and so the quadratic factor x2 – 3x + 1 is left as it is,

although it can further be factorised as 






 






 
2

53  
2

53 xx .

Example 8. Factorise 2x6 – 3x5 – 3x4 + 3x2 + 3x – 2

Solution : It is evident that both x – 1 and x + 1 are factors of the given expression.

Division by x2 – 1 gives 2x4 – 3x3 – x2 – 3x + 2 as quotient. Also

2x4 – 3x3 – x2 – 3x + 2 = 2 (x4 + 1) – 3 (x3 + x) – x2

= 2(x2 + 1)2 – 3x (x2 + 1) – 5x2
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= 2y2 – 3yx – 5x2, where y = x2 + 1

= 2y2 – 5yx + 2yx – 5x2

= (2y – 5x) (y + x)

= (2x2 – 5x + 2) (x2 + x + 1)

= (2x2 – 4x – x + 2) (x2 + x + 1)

= (x – 2) (2x – 1) (x2 + x + 1)

   The given expression = (x + 1) (x – 1) (x – 2) (2x – 1) (x2 + x + 1)

6.5 Factorisation by suitable arrangement and grouping of terms

Some algebraic expressions may be resolved into factors by suitable arrangement
of the terms.  However, there is no specific rule to be followed while arranging the terms ;
unless a factor is predetermined, and the method is handy only in certain cases.  The
following examples will make the process clear.

Example 9. Factorise a2 + ab – bc – c2.

Solution : a2 + ab – bc – c2 = (a2 – c2) + (ab – bc)

= (a + c) (a – c) + b (a – c)

= (a – c) (a + b + c)

Example 10. Factorise (p2 + q2) xy + pq (x2 + y2).

Solution : The expression = p2xy + q2xy + pqx2 + pqy2

= (p2xy + pqx2) + (pqy2 + q2xy)

= px (py + qx) + qy (py + qx)

= (px + qy) (py +qx)

= (px + qy) (qx + py)

Example 11. Factorise x4 – ab3 + b3x – ax3.

Solution : The expression = (x4 + b3x) – (ax3 + ab3)

= x (x3 + b3) – a (x3 + b3)

= (x3 + b3) (x – a)

= (x + b) (x2 – bx + b2) (x – a)

= (x – a) (x + b) (x2 – bx + b2)
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Example 12. Factorise a3 – 7a2 – 21a + 27.

Solution : The expression = (a3 + 27) – (7a2 + 21a)

= (a3 + 33) – 7a (a + 3)

= (a + 3) (a2 – 3a + 9) – 7a (a + 3)

= (a + 3) (a2 – 3a + 9 – 7a)

= (a + 3) (a2 – 10a + 9)

= (a + 3) (a – 1) (a – 9)

Example 13. Factorise x4 + 2x3y – 2xy3 – y4.

Sloution : The expression = (x4 – y4) + (2x3y – 2xy3)

= (x2 + y2) (x2 – y2) + 2xy (x2 – y2)

= (x2 – y2) (x2 + 2xy + y2)

= (x – y) (x + y) (x + y)2

= (x – y) (x + y)3

Example 14. Factorise (a + b + c) (bc + ca + ab) – abc.

Solution : The expression = {a + (b + c)} {a (b + c) + bc} – abc

= a2(b + c) + abc + a (b + c)2 + bc (b + c) –abc

= a2 (b+c) + a (b + c)2 + bc (b + c)
(arranging in descending powers of a)

= (b + c) [a2 + a (b + c) + bc]

= (b + c) [(a2 + ac) + (a + c) b]

= (b + c) [a (c + a) + b (c + a)]

= (b + c) (c + a) (a + b)

6.6 Factorisation of expressions of second degree in two variables

The process is illustrated in the following examples :

Example 15. Factorise x2 + xy – 2y2 + x + 5y – 2.

Solution : Arranging in descending powers of one of the letters say x, we have

x2 + xy – 2y2 + x + 5y – 2 = x2 + x (y + 1) – (2y2 – 5y + 2)

= x2 + x (y + 1) – (2y – 1) (y – 2)
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This can be treated as quadratic in x.  So, following the usual method,
we can factorise it.  Here we split the coefficient in the middle term.

Hence, the given expression

= x2 + x {(2y – 1) – (y – 2)} – (2y – 1) (y – 2)

= x2 + x (2y – 1) – x (y – 2) – (2y – 1) (y – 2)

= x (x + 2y – 1) – (y – 2) (x + 2y – 1)

= (x + 2y – 1) (x – y + 2)

Example 16. Factorise 4x2 – 4xy + y2 – 6x + 3y.

Solution : Arranging in descending powers of x, we find that the expression

= 4x2 – 2x (2y + 3) + y (y + 3)

We now split 4y (y + 3) into two factors viz, – 2y and – 2 (y + 3), whose

sum is the coefficient of the middle term.  Hence, the expression

= 4x2 – {2y + 2 (y + 3)} x + y (y + 3)

= 4x2 – 2yx – 2 (y + 3) x + y (y + 3)

= 2x (2x – y) – (y + 3) (2x – y)

= (2x – y) (2x – y – 3)

[ Factorisation can also be effected as follows :

Given expression = (4x2 – 4xy + y2) – (6x – 3y)

= (2x – y)2 – 3 (2x – y)

= (2x – y) (2x – y – 3)]

6.7 Factorisation of homogeneous expressions of second degree

We may proceed as in the previous article, by arranging in descending (or

ascending) powers of one of the letters involved.  See the following examples.

Example 17. Factorise x2 + 3xy + 2y2 + xz + 2yz.

Solution : The expression = x2 + x (3y + z) + 2y2 + 2yz

(on arranging in descending powers of x)
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= x2 + x {2y + (y + z)} + 2y (y + z)

[splitting the coefficient of x in the middle term
into two parts whose product is equal to 2y (y + z)]

= (x2 + 2xy) + {x (y + z) + 2y (y + z)}

= x (x + 2y) + (y + z) (x + 2y)

= (x + 2y) (x + y + z)

Example 18. Factorise a2 + 2b2 – 2c2 + 3ab + 3bc + ca.

Solution : The given expression = a2 + a (3b + c) + (2b2 + 3bc – 2c2)

= a2 + a (3b + c) + (2b2 + 4bc – bc – 2c2)

= a2 + a (3b + c) + (b +2c) (2b – c)

= a2 + a {(b + 2c) + (2b – c)} + (b + 2c) (2b – c)

= a (a + b + 2c) + (2b – c) (a + b + 2c)

= (a + b + 2c) (a + 2b – c)

Miscellaneous Examples

Example 19. Resolve into two quadratic factors x4 – 4x3 – x2 + 10x + 4.

Solution : The expression = (x4 – 4x3 + 4x2) – 5x2 + 10x + 4

= (x2 – 2x)2 – 5(x2 – 2x) + 4

= y2 – 5y + 4 (writing y for x2 – 2x)

= (y – 4) (y – 1)

= (x2 – 2x – 4) (x2 – 2x – 1)  (restoring the value of y)

Example 20. Resolve into factors x4 – 5x3y + 6x2y2 – 5xy3 + y4.

Solution : The expression = (x4 + y4) – 5xy (x2 + y2) + 6x2y2

= (x2 + y2)2 – 5xy (x2 + y2) + 4x2y2

= u2 – 5uv + 4v2       where u = x2 + y2, v = xy

= u2 – 4uv – uv + 4v2

= u (u – 4v) – v (u –4v)
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= (u – 4v) (u – v)

= (x2 + y2 – 4xy) (x2 + y2 – xy)

= (x2 – 4xy + y2) (x2 – xy +y2)

Example 21. Resolve into two quadratic factors x4 - 7x3y + 14x2y2 – 14xy3 + 4y4.

Solution : The expression = (x4 + 4y4) – 7x3y – 14xy3 + 14x2y2

= (x2 + 4x2y2 + 4y4) –7xy (x2 + 2y2) + 10x2y2

= (x2 + 2y2)2 – 7xy (x2 + 2y2) +10x2y2

= u2 – 7uv + 10v2,   where u = x2 + 2y2 and v = xy

= u2 – 2uv – 5uv + 10v2

= (u – 2v) (u – 5v)

= (x2 + 2y2 – 2xy) (x2 + 2y2 – 5xy)

= (x2 – 2xy + 2y2) (x2 – 5xy + 2y2)

Example 22. Factorise 8x3 + 8x2 – 3.

Solution : The expression = (2x)3 + 2 (2x)2 – 3

= y3 + 2y2 – 3,  where y = 2x

= (y3 – 1) + (2y2 – 2)

= (y – 1) (y2 + y + 1) + 2 (y – 1) (y + 1)

= (y –1) (y2 + 3y + 3)

= (2x – 1) (4x2 + 6x + 3)

Example 23. Resolve into two quadratic factors (x – 1) (x – 2) (x +3) (x + 4) + 4.

Solution : The expression = (x – 1) (x – 2) (x + 3)(x + 4) + 4

= {(x – 1) (x + 3)} {(x – 2) (x + 4)} + 4

= (x2 + 2x – 3) (x2 + 2x – 8) + 4

= (y – 3) (y – 8) + 4,  where y = x2 + 2x

= y2 – 11y + 28

= (y – 7) (y – 4)

= (x2 + 2x – 7) (x2 + 2x – 4)
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Note : In multiplying together the four binomials x – 1, x – 2,
x + 3, x + 4, we combine x – 1 with x + 3 and x – 2 with
x + 4, so that in the resulting products the terms containing
x2 and x may remain the same.

Example 24. Factorise x2 (y2 – z2) + 4xyz – y2 + z2.

Solution : The expression = x2y2 – x2z2 + 4xyz – y2 + z2

= (x2y2 + 2xyz + z2) – (x2z2 – 2xyz +y2)

= (xy + z)2 – (xz – y)2

= (xy + z + xz – y) (xy + z – xz + y)

= {x (y + z) – y + z} {x (y – z) + y + z}

EXERCISE 6.1

Resolve into factors :

 1. x3 – 2x2 – 5x + 6  2. x3 + 2x2 – 5x – 6  3. x3 + 4x2 – 2x – 20

 4. x3 + x2 – 5x + 3  5. x3 + 3x2 + 4x + 2  6. 6x3 – 11x2 + 6x – 1

 7. x3 – 5x2 – 2x + 4  8. x3 – 6x2 + 3x + 10  9. x3 + 2x2 – 4x + 1

10. x3 – 2x2 + x – 2 11. x3 – 6x + 4 12. x3 – 3x2 + 4

13. x3 – 7x2 + 36 14. x3 – 3x2 – 6x + 8 15. 8x3 + 8x2 – 1

16. 8x3 + 24x – 13 17. 27x3 – 9x + 2 18. 27x3 + 3x – 10

19. x4 – 2x3 – 3x2 – 2x + 1 20. x4 – 5x3 – 12x2 – 5x + 1 21. x4 – 6x2 + 8x – 3

22. x4 – 10x3 + 26x2 – 10x + 1 23. x4 – 3x3 + 4x2 – 3x + 3

24. x4 – 7x3 + 10x2 – 35x + 25 25. x4 – 6x3 + 12x2 – 2x – 21

26. x5 + 4x4 – 13x3 – 13x2 + 4x + 1 27. 2x5 – 7x4 – x3 – x2 – 7x + 2

28. 2x5 – 15x4 + 37x3 – 37x2 + 15x – 2 29. x4 – 6x3 + 15x2 – 18x + 5

30. 6a2 + 7ab + 2b2 + 11a + 7b + 3 31. a2 – 4b2 – 9c2 + 12bc + 4a – 8b + 12c

32. x2 – y2 – z2 – 2yz + x – y – z

33. 9x2 – 4y2 – 24zx + 16z2 – 15x + 10y + 20z

34. 6x2 + 7xy + 2y2 + 11xz + 7yz + 3z2 35. a2 – 3ab + 2b2 – 2bc – 4c2
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36. 2x2 + 5yz + zx – 10xy – z2 37. x2 – 2xy + y2 – 5x + 5y

38. 4x2 – 4xy + y2 – 6x + 3y 39. 4x2 – 12xy + 9y2 + 2x – 3y – 2

40. x2 – 3x (2y – 1) + 4y (2y – 3) 41. x4 – 2x3y + 2x2y2 – 2xy3 + y4

42. (a2 + b2) x2 – a2b (2a + b) + a (2bx2 – a3)

43. (2x2 + 3b2) a – (2a2 + 3x2) b 44. a4 – b3c + a2b2 – b2c2

45. a3 – 7a2b + 14ab2 – 8b3 46. a3 + 6a2 – 24a – 64

47. 3x3 – (5a + 3b) x2 + (3a + 5ab) x – 5a2 48. x4 + 4x3y + 10x2y2 + 4xy3 + y4

49. x4 – 5x3y + 6x2y2 – 5xy3 + y4 50. a4b4 + a2b2 – c2 + 2abc + 1

51. a3 (b – c) + b3 (c – a) + c3 (a – b)

52. (i) (x + 1) (x + 2) (x – 3) (x – 4) + 6

(ii) (x – 1) (x – 2) (x + 4) (x + 5) + 8

(iii) (x – 1) (x – 3) (x + 4) (x + 6) + 13

(iv) (x + 1) (x + 2) (x + 3) (x + 4) – 3

(v) x (x – 2) (2x + 1) (2x – 3) – 63

53. 2x3 – x2y – y3 54. x3 – 6xy2 + 9y3

55. x2 + bx – (a2 – 3ab + 2b2) 56. x2 + 2xy – 5zx – 4yz + 6z2

57. a2x2 – b2y2 – bcyz + cazx 58. (a2 + b2) (x2 – y2) + 2ab (x2 + y2)

59. Find the value of x4 – x3 + x2 + 2, when x2 + 2 = 2x

60. Find the value of xy (x + y) + yz (y + z) + zx (z + x) + 3xyz, when x = a (b – c),
y = b (c – a) , z = c (a – b).

ANSWER

1. (x – 1) (x + 2) (x – 3) 2. (x + 1) (x – 2) (x + 3) 3. (x – 2) (x2 + 6x + 10)

4. (x – 1)2 (x + 3) 5. (x + 1) (x2 + 2x + 2) 6. (x – 1) (2

7. (x + 1) (x2 – 6x + 4) 8. (x + 1) (x – 2) (x – 5) 9. (x – 1) (x

10. (x – 2) (x2 + 1) 11. (x – 2) (x2 + 2x – 2) 12. (x + 1) (x – 2)2

13. (x + 2) (x – 3) (x – 6) 14. (x – 1) (x + 2) (x – 4) 15. (2x + 1) (4x2 + 2x – 1)
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16. (2x – 1) (4x2 + 2x + 13) 17. (3x – 1)2 (3x + 2) 18. (3x – 2) (9x2 + 6x + 5)

19. (x2 – x + 1)2 20. (x + 1)2 (x2 – 7x + 1) 21. (x – 1)3 (x + 3)

22. (x2 – 4x + 1) (x2 – 6x + 1) 23. (x2 + 1) (x2 – 3x + 3)

24. (x2 + 5) (x2 – 7x + 5) 25. (x + 1) (x – 3) (x2 – 4x + 7)

26. (x + 1) (x2 – 3x + 1) (x2 + 6x + 1) 27. (x + 1) (x2 – 4x + 1) (2x2 – x + 2)

28. (x – 1) (x – 2) (2x – 1) (x2 – 4x + 1) 29. (x2 – 3x + 1) (x2 – 3x + 5)

30. (2a + b + 3) (3a + 2b + 1) 31. (a – 2b + 3c) (a + 2b – 3c + 4)

32. (x – y – z) (x + y +z + 1) 33. (3x – 2y – 4z) (3x + 2y – 4z – 5)

34. (2x + y + 3z) (3x + 2y + z) 35. (a – b + 2c) (a – 2b – 2c)

36. (2x – z) (x – 5y + z) 37. (x – y) (x – y – 5)

38. (2x – y) (2x – y – 3) 39. (2x – 3y – 1) (2x – 3y + 2)

40. (x – 4y) (x – 2y + 3) 41. (x – y)2 (x2 + y2)

42. (a + b)2 (x – a) (x + a) 43. (2a – 3b) (x2 – ab)

44. (a2 – bc) (a2 + bc + b2) 45. (a – b) (a – 2b) (a – 4b)

46. (a + 2) (a – 4) (a + 8) 47. (3x – 5a) (x2 – bx + a)

48. (x – y)2 (x2 + 6xy + y2) 49. (x2 – xy + y2) (x2 – 4xy + y2)

50. (a2b2 + ab – c + 1) (a2b2 – ab + c + 1) 51. – (b – c) (c – a) (a – b) (a + b + c)

52. (i) (x2 – 2x – 5) (x2 – 2x – 6) (ii) (x2 – 3x – 6) (x2 + 3x – 8)

(iii) (x2 + 3x – 5) (x2 + 3x – 17) (iv) (x2 + 5x + 3) (x2 + 5x + 7)

(v) (x – 3) (2x + 3) (2x2 – 3x + 7)

53. (x – y) (2x2 + xy + y2) 54. (x + 3y) (x2 – 3xy + 3y2)

55. (x + a – b) (x – a + 2b) 56. (x + 2y – 3z) (x – 2z)

57. (ax – by) (ax + by + cz)

58. {(a + b) x + (a – b) y } {(a + b) x – (a – b) y}

59. 0. 60. 0
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6.8 Identities

We are already familiar with simple algebraic and trigonometric identities.  In fact,
an algebraic identity is a statement that two algebraic expressions are equal for all values of
the letters or variables involved.  For example, a2 – b2 = (a + b) (a – b) is an identity, for
the statement is true for all values of a and b ; whereas 2x + 3 = 3x – 1 is simply an
equation but not an identity ; for it holds only when x = 4.

To prove an identity, we are to establish the equality of its two sides.  The following
procedures may be noted for proving an identity :

(i) Reduce one of the sides (preferably, the more complex side) to the form
of the other by simplification using known formulae.

(ii) If both sides are complex, reduce each side to its simplest form and
establish their equality.

(iii) Sometimes an identity follows easily by transposition of terms or addition
of terms to both sides.

(iv) Sometimes an identity becomes trivial when new letter(s) are substituted
for a group of letters occuring in the identity.  Make such substitutions
whenever necessary.

The following examples will illustrate the process :

Example 25. Show that (x – a)2 (b – c) + (x – b)2 (c – a) + (x – c)2 (a – b)
= – (b – c) (c – a) (a – b)

Solution : Putting x – a = p, x – b = q and x – c = r, we have

q – r = (x – b) – (x – c) = – (b – c)

r – p = (x – c) – (x – a) = – (c – a)

and p – q = (x – a) – (x – b) = – (a – b)

   L.H.S. = – [p2 (q – r) + q2 (r – p) +r2 (p – q)]

= (q – r) (r – p) (p – q) (Result VI of § 2.1)

= (–1)3 (b – c) (c – a) (a – b)

= – (b – c) (c – a) (a – b) = R.H.S.

Example 26. Prove that 27 (x + y + z)3 – (x + 2y)3 – (y + 2z)3 – (z + 2x)3

= 3(x + 3y + 2z) (2x + y + 3z) (3x + 2y + z)
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Solution : Putting x + 2y = a, y + 2z = b and z + 2x = c we have

a + b + c = 3x + 3y + 3z = 3(x + y + z)

Now (a + b + c)3 – a3 – b3 – c3 = 3 (b + c) (c + a) (a + b)

   27(x + y + z)3 – (x + 2y)3 – (y + 2z)3 – (z + 2x)3

= 3{(y + 2z) + (z + 2x)} {(z + 2x) + (x + 2y)} {(x + 2y) + (y + 2z)}

= 3(2x + y + 3z) (3x + 2y + z) (x + 3y + 2z)

= 3(x + 3y + 2z) (2x + y + 3z) (3x + 2y + z)

Example 27. Prove that (x + y + 2z) (x + 2y + z) (2x + y + z) – (y + z) (z + x) (x + y)
= 2(x + y + z)3 + 2xyz

Solution : We have

(a + b + c)3 = a3 + b3 +c3 + 3(b + c) (c + a) (a + b) .................. (1)

 3(b + c) (c + a) (a + b) – (a + b + c)3 = – (a3 + b3 + c3) ......... (2)

Let a = y + z, b = z + x and c = x + y. Then

b + c = 2x + y + z, c + a = x + 2y + z, a + b = x + y + 2z and a + b + c
= 2(x + y + z).

   (2) becomes 3(2x + y + z) (x + 2y + z) (x + y + 2z) – 8(x + y + z)3

= – [(y + z)3 + (z + x)3 + (x + y)3]

= – [2 (x3 + y3 + z3) + 3{yz (y + z) + zx (z + x) + xy (x + y)}]

= – 2 (x3 + y3 + z3) – 3{yz(y + z) + zx (z + x) + xy (x + y) + 2xyz} + 6xyz

= xyzyxxzzyzyx 6)( )( )( 3)( 2 333  (Result VII of § 6.1)

= xyzyxxzzyyxxzzyzyx 6))()(( 3)])()(( 3)[( 2 3 
[by using (1)]

= – 2(x + y + z)3 + 3 (y + z) (z + x) (x + y) + 6xyz

 By transposition,

3 (x + y + 2z) (x + 2y + z) (2x + y + z) – 3 (y + z) (z + x) (x + y) =
6 (x + y + z)3 + 6xyz

Dividing both sides by 3, we get the desired identity.

Example 28. Prove that (a + b + c) (x + y + z) + (a + b – c) (x + y – z) +
(b + c – a) (y + z – x) + (c + a – b) (z + x – y) = 4 (ax + by + cz)
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Solution : Let b + c – a = l, c + a – b = m and a + b – c = n Then,

m + n = 2a, n + l = 2b, l + m = 2c and l + m + n = a + b + c

  L.H.S. = )( )( )( ))(( yxzmxzylzyxnzyxnml 

=

= 2 (m + n) x + 2 (n + l) y + 2 (l + m) z

= 4ax + 4by + 4cz = 4 (ax + by + cz) =R.H.S.

Example 29. Prove that (y – z) (1 + xy) (1 + xz) +(z – x) (1 + yz) (1 + yx) +
(x – y) (1 +zx) (1 + zy) = (y – z) (z – x) (x – y)

Solution : L.H.S.

= (y – z) (xy + 1) (xz + 1) + (1 + yz) [(z – x) (1 + xy) + (x – y) (1 + zx)]

= (y – z) [x2yz + x (y + z) + 1] + (1 + yz) [ – x2 (y – z) – {y – z}]
(arranging in descending powers of x)

= (y – z) [x2 yz + x (y + z) +1 – (1 + yz) (x2 + 1)]

= (y – z) [ – x2 + x (y + z) – yz]

= (y – z) [(zx – x2) – (yz – xy)]

= (y – z) [x (z – x) – y (z – x)]

= (y – z) (z – x) (x – y) = R.H.S.

6.9 Conditional Identities

Let us consider the relation

(a + b + c)3 – a3 – b3 – c3 = 3 (a + b) (b + c) (c + a).

This relation is true for all values of a, b, c and therefore it is an identity.  If
we impose a condition on a, b, c say, a + b + c = 0, then the above relation becomes

– a3 – b3 – c3 = 3 (a + b) (b + c) (c + a)

i.e. a3 + b3 + c3 = – 3 (a + b) (b + c) (c + a).

Thus, the relation a3 + b3 + c3 = – 3 (a + b) (b + c) (c + a) holds only when
a + b + c = 0.  Such relations which hold under some condition(s) imposed on the symbols
(variables) involved, are called conditional identities.  We shall now establish some
conditional identities.
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6.10 If a + b + c = 0, then

(i) a2 + b2 + c2 = – 2 (ab + bc + ca)

(ii) a3 + b3 + c3 = 3abc

(iii)

(iv)

To establish the conditional identity (i), we have

(a + b + c)2 = a2 + b2 + c2 + 2 (ab + bc + ca)

0 = a2 + b2 +c2 + 2 (ab +bc + ca)     [  a + b + c = 0 ]

a2 + b2 + c2 = – 2 (ab + bc + ca)

To establish (ii), we have

a3 + b3 + c3 = 3abc    [  a + b + c = 0 ]

[ Alternatively, we can also establish as follows :

a + b + c = 0

a + b = – c

(a + b)3 = (– c)3

a3 + b3 + 3ab (a + b) = – c3

a3 + b3 + 3ab (– c) = – c3

a3 + b3 + c3 = 3abc ]

To prove (iii), we have

(ab + bc + ca)2 = a2b2 + b2c2 + c2a2 + 2abc (a + b + c) = a2b2 + b2c2 + c2a2

[  a + b + c = 0 ]

Also, – 2 (ab + bc + ca) = a2 + b2 + c2     [ from (i) ]
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Hence, .

To prove (iv), we have

                      = 0    [  a + b + c = 0 ]

a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2c2a2

= 2 (a2b2 + b2c2 + c2a2)

=     [from (iii)]

=

Hence, .

Example 30. If a + b + c = 0, prove that

(b + c – a)3 + (c + a – b)3 + (a + b – c)3

= 3 (b + c – a) (c + a – b) (a + b – c) = – 24abc.

Solution : Putting p = b + c – a, q = c + a – b and r = a + b – c, we get

p + q + r = a + b + c = 0

Hence, p3 + q3 + r3 = 3pqr

i.e.   (b + c – a)3 + (c + a – b)3 + (a + b – c)3

= 3(b + c – a) (c + a – b) (a + b – c)

Further, b + c – a = a + b + c – 2a = – 2a

c + a – b = a + b + c –2b = –2b

and a + b – c = a + b +c – 2c = – 2c, so that

(b + c – a) (c + a – b) (a + b – c) = – 8abc

Thus we have,

(b + c – a)3 + (c + a – b)3 + (a + b – c)3

= 3 (b + c – a) (c + a – b) (a + b – c) = – 24abc

Example 31. If a + b + c = 0, prove that

b2 + bc + c2 = c2 +ca + a2 = a2 + ab + b2 = – (bc + ca + ab).

Higher Mathematics for Class – X



135

Solution : b2 + bc + c2 = (b + c)2 – bc

= (b + c) (b + c) –bc

= – a (b + c) – bc         ( b + c = – a)

= – ab – ca – bc

= – (bc + ca + ab)

Similarly, c2 + ca + a2 = (c + a)2 – ca = – b (c + a) – ca

= – (bc + ca + ab)

and a2 + ab + b2 = (a + b)2 – ab = – c (a + b) – ab

= – (bc + ca + ab)

  b2 + bc + c2 = c2 + ca + a2 = a2 + ab + b2 = – (bc + ca + ab)

Example 32. If a + b + c = 0, prove that

bc – a2 = ca – b2 = ab – c2 = bc + ca + ab.

Solution : bc – a2 = bc + a (– a) = bc + a (b + c)    (  b + c = – a)

= bc + ca + ab ;

ca – b2 = ca + b (– b) = ca + b (c + a) = bc + ca + ab ;

ab – c2 = ab + c (– c) = ab + c (a + b) =bc + ca + ab

  bc – a2 = ca – b2 = ab – c2 = bc + ca + ab

Example 33. If a + b + c = 0, prove that

(b + c)3 + (c + a)3 + (a + b)3 = 3 (b + c) (c + a) (a + b) = – 3abc.

Solution : Putting b + c = p, c + a = q and a + b = r, we get

p + q + r = 2 (a + b +c) = 0

 p3 + q3 + r3 = 3pqr

i.e.  (b + c)3 + (c + a)3 + (a + b)3 = 3 (b + c) (c + a) (a + b)

Also, since a + b + c = 0, b + c = – a, c + a = – b and a + b = – c

  3 (b + c) (c+ a) (a + b) = 3 (– a) (– b) (– c) = – 3abc

Thus, (b + c)3 + (c + a)3 + (a + b)3 = 3 (b + c) (c + a) (a + b) = – 3abc.
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Example 34. If a + b + c = 0, prove that

(a + 2b + 3c)3 + (2a + 3b + c)3 + (3a + b + 2c)3

= 3 (b + 2c) (a + 2b) (c + 2a).

Solution : Let a + 2b + 3c = p, 2a + 3b + c = q and 3a + b + 2c = r

Then p + q + r = 6 (a + b + c) = 0

 p3 + q3 + r3 = 3pqr

i.e. (a + 2b + 3c)3 + (2a + 3b + c)3 + (3a + b + 2c)3

=  3 (a + 2b + 3c) (2a + 3b + c) (3a + b + 2c)

=  3 (a + b + c + b + 2c) (a + b + c + a + 2b) (a + b + c + c + 2a)

=  3 (b + 2c) (a + 2b) (c + 2a)

Example 35. Prove that 2(s – a) (s – b) (s – c) + a (s – b) (s – c) + b (s – c) (s – a)
+ c (s – a) (s – b) = abc, if  2s = a + b + c

Solution : We have

2 (s – a) (s – b) (s – c) = 2 [s3 – s2 (a + b + c) + s (bc + ca + ab) – abc]

= 2 [s3 – s2 . 2s + s (bc + ca + ab) – abc]

= – 2s3 + 2s (bc + ca + ab) – 2abc .................................... (i)

Also, a (s – b) (s – c) + b (s – c) (s – a) + c (s – a) (s – b)

= a [s2 – (b + c) s + bc] + b [s2 – (c + a) s + ca] + c [s2 – (a + b) s + ab]

= s2 (a + b + c) – s [a (b + c) + b (c + a) + c (a + b)] + 3abc

= 2s3 – 2s (bc + ca + ab) + 3abc .............................................. (ii)

Adding (i) and (ii), we obtain

EXERCISE 6.2

Prove that (1 – 15)

 1. (y – z)3 + (z – x)3 + (x – y)3 = 3 (y – z) (z – x) (x – y)

 2. (b + c – a)3 + (c + a – b)3 + (a + b – c)3 + 24abc
= (2a + b – c)3 + (b + c)3 – (a + b – c)3 – 6a (a + b) (a – 2c)

 3. ax + by + cz = (a + b + c) (x + y + z) if x = a2 – bc, y = b2 – ca, z = c2 – ab.
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 4. x3 + y3 + z3 – 3xyz = (a3 + b3 + c3 – 3abc)2 if x = a2 – bc, y = b2 – ca, z = c2 – ab.

 5. a2x + b2y + c2z = (x + y + z) (a2 + b2 + c2),
if a2 = x2 – yz, b2 = y2 – zx and c2 = z2 – xy

 6. s (s – a) (s – b) + s (s – c) (s – a) + s (s + a) (s – c) + c (s + a) (s + b)
= (s + a) (s + b) (s + c),  if s = a + b + c

 7. (s – a)3 + (s – b)3 + (s – c)3 – 3 (s – a) (s – b) (s – c)

= , if 2s = a + b + c

 8. a3 (b – c)3 + b3 (c – a)3 + c3 (a – b)3 = 3abc (b – c) (c – a) (a – b)

 9. (x – y) (x + y – 2z)3 + (y – z) (y + z – 2x)3 + (z – x) (z + x – 2y)3 = 0

10. (s – a)3 + (s – b)3 + (s – c)3 = s3 – 3abc, if 2s = a + b + c

11. 2a (b + c – a) + (c + a – b) (a + b – c)
= 2b (c + a – b) + (a + b – c) (b + c – a)
= 2c (a + b – c) + (b + c – a) (c + a – b)
= (c + a – b) (a + b – c) + (a + b – c) (b + c – a) + (b + c – a) (c + a – b)

12. a (b – c)3 + b (c – a)3 + c (a – b)3 = (b – c) (c – a) (a – b) (a + b + c)

13. (a2 + b2 + c2) (p2 + q2 + r2) – (ap + bq + cr)2 = (aq – bp)2 + (br – cq)2 + (cp – ar)2

14. x (y – z) (1 + xy) (1 + zx) + y (z – x) (1+ yz) (1 + yx)
+ z (x – y) (1 + zx) (1 + zy) = xyz (y – z) (z – x) (x – y)

15. (b – c) (1 + a2b) (1 + a2c) + (c – a) (1 + b2c) (1 + b2a) + (a – b) (1 + c2a) (1 + c2b)
= – abc (a + b + c) (b – c) (c – a) (a – b)

16. If x + y + z = a, yz + zx + xy = b  and xyz = c, prove that
a3 – 3ab + 3c = x3 + y3 + z3

17. If 2s = a + b + c and 2t2 = a2 + b2 + c2, show that
(t2 – a2) (t2 – b2) + (t2 – b2) (t2 – c2) + (t2 – c2) (t2 – a2) = 4s (s – a) (s – b) (s – c)

18. If s = a + b + c, prove that

(s – 3a)2 + (s – 3b)2 + (s – 3c)2 = 3 {(a – b)2 + (b – c)2 + (c – a)2}

19. If a + b + c = 1, prove that

(a + bc) (b + c) = (b + ca) (c + a) = (c + ab) (a + b) = (1 – a) (1 – b) (1 – c)

20. If s = a + b + c, show that (s – a) (s – b) (s – c) = (a + b + c) (bc + ca + ab) – abc
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21. If a + b + c = 0, prove that

(i) a (a + b) (a + c) = b (b + c) (b + a) = c (c + a) (c + b) = abc

(ii) a2 (b + c) + b2 (c + a) + c2 (a + b) = 3 (b + c) (c + a) (a + b)

(iii) a (b – c)3 + b (c – a)3 + c (a – b)3 = 0

(iv)

(v)
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CHAPTER 7

TRIGONOMETRY

7.1 Introduction

You are already familiar with the trigonometric ratios of an acute angle.  The
definitions of the trigonometric ratios were given with reference to a right triangle.  But in
Trigonometry, you know that angles can be of any sign i.e. positive or negative and of
any magnitude.  Indeed, we can talk about angles like – 45°, 390°, – 215°, 7200°, 980°
etc. When it comes to the definitions of trigonometric ratios of angles like these, it is not
that simple as the ones for an acute angle as given in the previous class.  In this chapter,
we shall give general definitions of trigonometric ratios of angles of any sign and magnitude.
We shall then discuss associated or allied angles and their trigonometric ratios.

7.2 Trigonometric ratios of angles of any sign and magnitude

Let a revolving line OL start from the initial position OX and trace out
an angle .  The revolution is anti-clockwise or clockwise according as  is
+ve or – ve.  Also, the final position of the revolving line can be anywhere around O in
the plane of the rectangular cartesian coordinate system according to the magnitude of 
(Fig. 7.1)
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Fig. 7.1

Let us take any point P (x, y) other than the origin on the final position of the
revolving line OL and let OP = r (> 0).  Then the trigonometric ratios of the
angle  are defined as

and

If x = 0, then tan  and sec  are not defined and if y = 0, then cot  and cosec
are not defined.

Here, r is always positive but x and y can be positive, negative or zero according
to the final position of the revolving line OL.  Also, we say that the angle  lies in the
1st quadrant, 2nd quadrant, 3rd quadrant, 4th quadrant according as the final position of
the revolving line is in the 1st quadrant, 2nd quadrant, 3rd quadrant, 4th quadrant
respectively.  Further, you see for yourself that these general definitions of trigonometric
ratios of  agree with the definitions given in previous class when  is acute.

7.3 Signs of Trigonometric ratios

In the previous section, we have defined the trigonometric ratios of an angle .  As
you see, each of the trigonometric ratios of  is a ratio of two of r, x and y.  Since r is
always positive, the sign of a trigonometric ratio (whether +ve
or –ve) depends upon the signs of the coordinates x and y of the point P, which in turn
depend upon the quadrant in which  lies.  Let us now check the signs of the trigonometric
ratios of an angle  when  lies in different quadrants.
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(i) If  lies in the 1st quadrant, then x > 0, y > 0, r > 0.

 all the trigonometric ratios of  are positive.

(ii) If  lies in the 2nd quadrant, then x < 0, y > 0, r > 0.

 only sin  and cosec  are positive and others negative.

(iii) If  lies in the 3rd quadrant, then x < 0, y < 0, r > 0.

 only tan  and cot  are positive and others negative.

(iv) If  lies in the 4th quadrant, then x > 0, y < 0, r > 0.

 only cos  and sec  are positive and others negative.

The results can be easily remembered by the quadrant rule : “all, sin, tan, cos” (see
Fig. 7.2)

Fig. 7.2

7.4 Allied (or Associated) Angles

Two angles are said to be allied to (or associated with) each other if their sum or
difference is a multiple of 90°

Thus, the angles – , 90° , 180° , 270° , 360° , etc. are angles
allied to  (measured in degrees).  In general, any angle of the form n × 90° , n Z,
is allied to (associated with) .  In this chapter, we shall find the trigonometric ratios of
angles allied to  in terms of those of .

7.5 Trigonometric ratios of (– ) in terms of those of 

Let a revolving line OA starting from the initial position OX trace out an acute
angle  in the anti-clockwise sense.  Let there be another revolving line OA' which starts
from the initial position OX and traces out angle –  in the clockwise sense.
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Let P (x, y) be any point on OA such that OP = r.  We draw PM OX and
produce it to meet OA' at P'.

Then, the coordinates of P' are (x, – y) and OP' = r   ( OPM OP'M).

and

Examples :

7.6 Trigonometric ratios of (90°– ) in terms of those of 

Let a revolving line OA starting from the initial position OX trace out an acute
angle .  Let another revolving line OA' starting from the initial position OX first trace
out an angle 90° and then revolves backwards through an angle  so that in the final
position of the line, XOA' = 90° – .

Let P (x, y) and P' (x', y') be two points
on OA and OA' respectively such that
OP = OP' = r.  We draw PM OX and
P'M' OX.  Then, clearly triangle OPM and
P'OM' are congruent.

So, we have 

  x' = y and y' = x (  they have the
same sign)

Now,

Fig. 7.3

P' (x, – y)

M

Y'

X'
O

Y

r

r

–

P (x, y)

X

A

A'

P' (x', y')

X'
O

Y'

Y

M'

90
°– P (x, y)

A

X

A'

M

Fig. 7.4

r

r
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and

Examples :

7.7 Trigonometric ratios of (90°+ ) in terms of those of 

Let a revolving line OA starting from the initial position OX trace out an acute
angle .  Let another line OA' starting from the initial position OX first trace out an angle
90° and further revolve through an angle  in the anti-clockwise direction so that in the
final position of the line, XOA' = 90° + .

Let P(x, y) and P'(x', y') be two points
on OA and OA' respectively such that
OP = OP' = r.  We draw PM OX and
P'M' OX.

Now, in the right triangles OPM and
OP'M', PMO = P'M'O = 90°, POM =

OP'M' and OP = OP'.

 OPM  P'OM'

So, we have

  x' = – y  (  x' and y have opposite signs)

and y' = x    (  x and y' have the same sign)

Now,

P (x, y)

P' (x', y')

M'
X'

A'

r

O

Y'

Y

r

M
X

A

90°+

Fig. 7.5
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and

Examples :

7.8 Trigonometric ratios of (180° – ) in terms of those of 

Let a revolving line OA starting from the initial position OX trace out an acute
angle .  Let another line OA' starting from the initial position OX first trace out an angle
180° and then revolves backwards through an angle  so that in the final position of the
line, XOA' = 180 – .

Ler P (x, y) and P' (x', y') be two
points on OA and OA' respectively such that
OP = OP' = r.  We draw PM OX and
P'M' OX.

Now, in the right triangles OPM and
OP'M',

PMO = P'M'O = 90°,

POM = P'OM' and OP = OP'.

OPM OP'M'

So, we have

  x' = –x  (  x and x' have opposite signs)

and y' = y   (  y and y' have the same sign)

Now,

P' (x', y')

M'
X'

A'

r

O

180°–

Y'

Y

r P (x, y)

M X

A

Fig. 7.6
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and

Examples :

7.9 Trigonometric ratios of (180°+ ) in terms of those of 

Let a revolving line OA starting from the initial position OX trace out an acute
angle .  Let another line OA' starting from the initial position OX first trace out an angle
180° and further revolve through an angle  in the anti-clockwise direction so that in the
final position of the line, XOA' = 180° + .

Ler P (x, y) and P' (x', y') be two points
on OA and OA' respectively such that
OP = OP' = r.  We draw PM OX and
P'M' OX.

Now, in the right triangles OPM and
OP'M',

PMO = P'M'O = 90°,

POM = P'OM' and OP = OP'.

OPM OP'M'

So, we have

  x' = –x  (  x and x' have opposite signs)

and y' = –y  (  y and y' have opposite signs)

Now,

P (x, y)

A

X
M

r

X' M'

Y

r

Y'

P' (x', y')

18
0°

+

Fig. 7.8

O

A'
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and

Examples :

7.10 Trigonometric ratios of (270°– ) in terms of those of 

Let a revolving line OA starting from the initial position OX trace out an acute
angle .  Let another line OA' starting from the initial position OX first trace out an angle
270° and revolves backwards through an angle  so that in the final position of the line,

XOA' = 270° – .

Ler P (x, y) and P' (x', y') be two
points on OA and OA' respectively such
that OP = OP' = r.  We draw PM OX
and P'M' OX.

Now, in the right triangles OPM and
OP'M',

PMO = P'M'O = 90°,

POM = OP'M' and OP = OP'.

OPM P'OM'

So, we have

  x' = –y  (  x' and y have opposite signs)

and y' = –x  (  x and y' have opposite signs)

Now,

X'

P' (x', y')

A'

r

M'
M

X

A

P (x, y)

r

Y

Y'

27
0°

–

Fig. 7.9

O
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and

Examples :

7.11 Trigonometric ratios of (270°+ ) in terms of those of 

Let a revolving line OA starting from the initial position OX trace out an acute
angle .  Let another line OA' starting from the initial position OX first trace out an angle
270° and further revolves through an angle  in the anti-clockwise direction so that in
the final position of the line, XOA' = 270° + .

Let P(x, y) and P'(x', y') be two
points on OA and OA' respectively such
that OP = OP' = r.  We draw PM OX and
P'M' OX.

Now, in the right triangles OPM and
OP'M',

PMO = P'M'O = 90°,

POM = OP'M' and OP = OP'.

OPM P'OM'

So, we have

  x' = y  (  x' and y have the same sign)

and y' = –x  (  x and y' have opposite signs)

Now,

P' (x', y')

A'
Y'

r

XM
M'

P (x, y)

A

r

Y

X'
O

270°+

Fig. 7.10
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and

Examples :

7.12 Trigonometric ratios of (360° ) in terms of those of 

When a revolving line OA starting from the initial position OX makes a complete
revolution in the anti-clockwise direction, it traces out an angle 360° and the line returns
to the initial position OX. So, when the revolving line traces out an angle (360°+ ), the
final position of the line will be the same as that of the line tracing out an angle .  Hence,
the trigonometric ratios of (360° + ) are the same as those of .  By a similar argument,
the trigonometric ratios of (360° – ) are the same as those of (– ).

sin (360° – ) = sin (– ) = – sin

cos (360° – ) = cos (– ) = cos

tan (360° – ) = tan (– )= – tan

cot (360° – ) = cot (– ) = – cot

sec (360° – ) = sec (– ) = sec

cosec (360°– ) = cosec (– ) = – cosec

And, sin (360° + ) = sin

cos (360° + ) = cos

tan (360° + ) = tan

cot (360° + ) = cot

sec (360° + ) = sec

cosec (360° + ) = cosec

Higher Mathematics for Class – X
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Here, it can be easily seen that any multiple of 360° can be added or subtracted
from an angle without altering the trigonometric ratios of the angle.

Thus, for any integer n, sin (n × 360° ) = sin ( ) and so on.

Note : The results established for allied angles based on the assumption that
 is acute are also valid for any value of  without restriction.

Example 1. Show that

(i)     (ii)    (iii)  

Solution : (i)  

[or, ]

(ii) cos 420°

= cos (360° + 60°)

= cos 60° =

(iii) tan (– 1050°) = – tan 1050°,    (  tan (– ) = – tan )

= – tan (3 × 360° – 30°)

= – tan (– 30°)

= – (– tan 30°) = tan 30°

=

Example 2. Find the values of the sine, cosine and tangent of the following
angles :

(i)  120°        (ii)  – 480°           (iii)  495°

Solution : (i)

Trigonometry



150

(ii) sin (– 480°) = – sin 480°    (  sin (– ) = – sin )

= – sin (360° + 120°)

= – sin 120° = – sin (90° + 30°)

=

cos (– 480°) = cos 480°   (  cos (– ) = cos )

= cos (360° + 120°)

= cos 120° = cos (90° + 30°)

= – sin 30° = –

tan (– 480°) = – tan 480°

= – tan (360° + 120°)

= – tan 120° = – tan (90° + 30°)

= – (– cot 30°) = cot 30° =

(iii)  sin 495° = sin (360° + 135°) = sin 135°

= sin (90° + 45°)

=

cos 495° = cos (360° + 135°) = cos 135°

= cos (90° + 45°)

=

tan 495° = tan (360° + 135°) = tan 135°

= tan (90° + 45°)

= – cot 45° = – 1

Example 3. Simplify :

(i) sin 420° cos 390° + cos (– 660°) sin (– 330°)

(ii)

(iii)

Higher Mathematics for Class – X
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Solution : (i) The given expression

= sin 420° cos 390° + cos (–660°) sin (– 330°)

= sin (360° + 60°) cos (360° + 30°) + cos (– 2 × 360° + 60°)
sin (– 360° + 30°)

= sin 60° cos 30° + cos 60° sin 30°

=

=

(ii) The given expression

=

=

=

=

=

= .

(iii) We have

and 

 the given expression

=

=

=

Trigonometry
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7.13 Solution of Trigonometric Equations

An equation involving one or more trigonometric functions (ratios) of a variable
(angle) is called a trigonometric equation.  A value of the unknown angle which satisfies
a trigonometric equation is called a solution or a root of the equation.
And, to solve a trigonometric equation means to find the solutions (roots) of the equation.

In the previous articles, we have seen that the values of a trigonometric ratio of
coterminus angles (angles whose terminal sides are the same) are the same.  Thus, in
general, a trigonometric equation has infinitely many solutions for if  is a solution of a
trigonometric equation, then the infinitely many angles which are coterminus with  are
also solutions of the equation.  The solutions  of a trigonometric equation such that
0° < 360° are referred to as principal solutions.  And, the infinitely many solutions of
a trigonometric equation constitute the general solution of the equation which in most cases
can be represented by an expression in terms of n Z.

Let us consider the equation .

We know that  and  i.e. .

Thus, = 30° and = 150° are the principal solutions of the equation.

Now, the angles coterminus with 30° are given by n × 360° + 30°, n Z and they
are .................. – 690°, – 330°, 30°, 390°, 750°, ......... ................................ (i)

And, the angles coterminus with 150° are given by n × 360° + 150°, n Z and they
are .................. – 570°, –210°, 150°, 510°, 870°, ............ ............................ (ii)

Now, all the angles in (i) and (ii) are the solutions of the given equation.  They
constitute the general solution of the equation and they can be represented by the
expression n × 180° + (– 1)n 30°, n Z (as you can check out).

In this chapter, we shall not be concerned with the general solution of a
trigonometric equation which will be dealt with in higher classes.  Here, we shall be
concerned with only solutions in a given range.

Example 4. Solve  (i)    (– 360° < < 360°)

(ii)  cot + tan =2 cosec ,   (0° < < 360°)

Solution : (i)

Case I :

Higher Mathematics for Class – X
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Now, we have , 

Also, 

i.e.

Here, the principal solutions are 30° and 150°.

And, the angles in the range – 360° < < 360° and coterminus with 30° and 150°
are – 360° + 30°, – 360° + 150°, 30° and 150° i.e. – 330°, –210°, 30° and 150°.

   = – 330°, – 210°, 30°, 150°

(Note :  To find angles coterminus with a given angle, add integral multiples of
360° to the angle.)

Case II :

We have, 

i.e.

Also, 

i.e. 

The principal solutions are 210° and 330°.

And, the angles in the range – 360° < <360° and coterminus with 210° and 330°
are – 360° + 310°, – 360° + 330°, 210° and 330° i.e. – 150°, – 30°, 210° and 330°.

  = –150°, – 30°, 210°, 330°.

Combining the two cases, we have the solutions are = 30°, 150°, 210°
and 330°.

(ii) cot  + tan = 2 cosec    (0° < < 360°)

Trigonometry
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2 sin  cos – sin = 0

sin (2 cos – 1) = 0

Either sin = 0  or 2 cos – 1 = 0

Here, sin = 0 is neglected because if sin = 0, then  and

 are undefined.

  We have,   2 cos – 1 = 0

  

= cos (360° – 60°)

= cos 300°.

Here, the principal solutions are 60° and 300° and they are the only solutions in
the given range 0° < < 360°.

  the solutions are = 60° and 300°.

Remark : To find solutions of a trigonometric equation in a given range, find the
principal solutions first and then find the angles in the given range
which are coterminus with the principal solutions.

EXERCISE 7.1

1. Write down the values of the trigonometric ratios of the following angles :

(i)  – 150°      (ii)  690°      (iii)  840°      (iv)  – 1530°

2. Find the value of :

(i)  sin 4620°    (ii)  cos 870°    (iii)      (iv)  

3. Show that :

(i) sin (540° + ) = – sin (ii) cot ( – 630°) = – tan

(iii) (iv) sin (– 360° – ) = – sin

4. Simplify :

(i) sin 405° cos 300° – cos 420° sin 225°

(ii) sin 420° cos 390° + cos (– 660°) sin (–330°)
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(iii)

(iv)

(v)

(vi) cos 24° + cos 55° + cos 125° + cos 204° + cos 300°

5. Show that :

(i)

(ii)

(iii)

(iv) cos n = (– 1)n, where n is any integer (positive or negative or zero)

(v) , where n is zero, or any integer (positive or negative)

(vi) , where n is any integer..

6. Solve for  (– 360° < < 360°)

(i) sec2 = 2 (ii)

(iii) tan2 + cot2 = 2 (iv) 2 cos2 – 3 cos + 1 = 0

(v)

7. If A, B, C denote the angles of a triangle, prove that

(i)

(ii)

(iii)

(iv)

Trigonometry
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(v)

8. (a) If A, B, C, D are the angles of a quadrilateral, then show that

(i)

(ii)

(iii) 

(b) If the quadrilateral ABCD is cyclic, then prove that

(i) sin B = sin D

(ii) cos A + cos B + cos C + cos D = 0

(iii) tan A + tan B + tan C + tan D = 0.

9. Show that

(i)

(ii)

(iii)

ANSWER

1. (i)

(ii)

(iii)

(iv) –1, 0, undefined, 0, undefined, –1.

2. (i)    (ii)     (iii)      (iv)  –1

4. (i)   (ii)  1   (iii)  2   (iv)  9   (v)  1   (vi)  

6. (i) 45º, 135º, 225º, 315º

(ii) 60º,  – 300°

(iii) 45º, 135º, 225º, 315º
(iv) 60º, 300º

(v) 30º, 120º, 210º, 300º,  – 60°,  –150°,  – 240°,  – 330°

–––––––––
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CHAPTER 8

STATICS

8.1 Introduction

We first get ourselves familiar with some fundamental concepts and terms.

Matter is anything that occupies space and can be perceived by our senses.

A body is a portion of matter limited in all directions, having a definite shape and
size and occupying some definite space.

A force is that which changes or tends to change, the state of rest or of uniform
motion of a body.

A rigid body is one whose size and shape do not alter when acted on by any
forces whatsoever, so that the distance between any pair of particles in it remains invariable.

A perfectly rigid body does not exist in nature. Bodies do change their shape as
well as size to some extent under great pressure. But, under ordinary forces, however,
the alterations are very slight and in many cases can be ignored. Thus, in problems where
action of forces on bodies are concerned, unless otherwise stated, we assume bodies to
be perfectly rigid.

A particle is a body of infinitely small dimensions. When we speak of a body as
a particle, we mean that we are not concerned with its actual dimensions and that we
can represent its position simply by a mathematical point.

Mechanics is that branch of Science which deals with the action of forces on
bodies. When acted upon by forces, a body may move or remain at rest relative to its
surroundings and accordingly Mechanics has two parts namely Dynamics and Statics.
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Dynamics is that part of Mechanics which deals with forces which do not neutralise and
therefore cause non-uniform motion and this has been studied in class IX.

Statics is that part of Mechanics which deals with bodies at rest when acted on
by forces or with the relations between the forces which keep a rigid body (or a system
of bodies) at rest.

Equilibrium

If a system of forces acting on a body keeps it at rest, then the forces are said to
be in equilibrium.

8.2 Representation of a force

A force has a given magnitude and acts at a particular point of a body in a definite
direction. In other words, a force has a definite magnitude and direction and as such it is
a vector quantity.

Now, a line segment has also a length and a direction and can be drawn through
a particular point. Thus, a line segment drawn through the point of application of a force
can represent the force completely in magnitude, direction and position, the magnitude of
the force being represented on a suitably chosen scale by the length of the line segment
drawn, the direction of the line segment representing the direction of the force, the
extremity of the line segment being at the point of application of the force.

For example, if the line segment AB represents a
force R, the direction of the line segment from A to B
represents the direction of R and the length AB of the
segment represents the magnitude of R on some suitable
scale.

If instead of AB, we write BA, it represents the same force with its direction
reversed. The force represented by the line segment AB is denoted in vector notation by

Note : 1. The sense of direction of a force represented by a line segment AB is
from A to B.

2. The magnitude of a force is proportional to the length of the line

segment representing it.

A B
R

Fig. 8.1
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8.3 The principle of transmissibility of a force

The effect of a force acting on a rigid body at any point is unaltered if its point of
application is transferred to any other point on its line of action, provided the two points
are in the body.

Suppose a force P acts at a point A of a rigid body
along the line AX. At any other point B of the body in
AX, introduce along the same line, two equal and opposite
forces each equal to P. The force P along AB and the
force P along BA, being equal and opposite, balance each
other and we are left with the force P acting at B along
BX, which is thus equivalent to the original force P at A.

8.4 Some special forces

(i) Weight

The weight of a body is the force with which the earth attracts the body. It is
proportional to the mass of the body, i.e., the quantity of matter in the body and its
direction is vertically downwards.

(ii) Reaction

According to Newton’s third law of motion, to every action there corresponds an
equal and opposite reaction. Thus in a system of two bodies, A and B if A exerts a
force P (action) on B, then the body B also exerts an equal force P (reaction) in the
opposite direction on A.

(iii) Tension

When a string is used to support a weight or to drag a body, the force exerted is
transmitted to the body through the string. Such a force exerted by means of a string is
called Tension.

If the string is of negligible weight, the tension is the same throughout its length and
is unchanged even when a portion of the string passes over a smooth surface, say, a
smooth peg or pulley.

If however, a string be knotted at any of its points to other strings or to weights,
the tension will not in general, be the same in the different portions separated by the knots.

A B X

P P P

Fig. 8.2

Statics
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8.5 Resultant and Components

If two or more forces act simultaneously on a rigid body and if a single force can
be obtained whose effect on the body is the same as the joint effect of the given forces
(i.e. produces exactly the same state of motion of the body), then this single force is
known as the resultant of the given forces, and the given forces, in turn, are called the
components of the single resultant force.

Now, we shall proceed to find the resultant of two forces acting at a point on a
rigid body.

8.6 Parallelogram of forces

Statement : If two forces acting at a point on a body be represented in magnitude,
direction and sense by the two adjacent sides of a parallelogram drawn from an angular
point, then their resultant is represented in magnitude, direction and sense by the diagonal
of the parallelogram drawn from that point.

Thus, if two forces P and Q, acting on a body at a point O, be represented in
magnitude, direction and sense by the two lines OA and OB respectively both drawn
from O, and the parallelogram OACB be completed with OA and OB as adjacent sides,
then the resultant force say R, will be represented in magnitude, direction and sense by
the diagonal OC drawn from O. Using vector notation, this law can be stated as

8.7 Analytical expression for the resultant of two given forces

Let the two forces P and Q acting at a point O at an angle  to each other  be
represented by OA and OB respectively. Complete the parallelogram OACB and join
the diagonal OC, which then, by parallelogram of forces, represents the resultant R. Let

 which will give the direction of the resultant. Now, draw 
(produced if necessary).

Fig. 8.3

B

A

C

O

Q
R

P
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Then, in fig. 8.4 (i), we have

Now,  

              = P+Q   (  OA=P and AC=Q)

Also, from  we have

    CL=AC 

Again, in fig. 8.4 (ii), we have

    

Now, OL=OA–LA=OA–AC

  = OA+AC

  = P+Q

Also, from  we have

    = 

Thus, in both the figures, we have

 and 

Now, from the right triangle OCL, we have

OC2=OL2 + CL2

R2 = (P+Q )2 +

Fig. 8.4(i) (ii)

A

CB

O

Q
R

P A

CB

Q

O

R

PL L
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 ..................... (i)

And, in  we have

   .................... (ii)

Thus, (i) and (ii) give respectively the magnitude and direction of the resultant.

Observation :  In both the figures, we have

   

and   

Thus, 

Corollary 1. If  i.e. if the two forces P and Q are perpendicular to each other,,
then

 and        (   cos 90º=0 and sin 90º=1)

Corollary 2.   The greatest and the least values of the resultant

Since  R will be the greatest when  is the greatest

i.e., when =1 or when 

Then, 

Also, R will be least when is least i.e., when =–1 or when 

Then,

Thus, the greatest value of the resultant R is P+Q and the least value is P–Q or
Q–P according as P> Q or Q>P.

8.8 Resolution (breaking up) of a given force into two components

A given force may be resolved into two components in an infinite number of ways,
for, by parallelogram of forces, if with the line segment representing the given force as
diagonal, we construct any parallelogram, the two adjacent sides of this parallelogram will
represent the two component forces having the given force as their resultant and we can
construct infinitely many such parallelograms.

Higher Mathematics for Class – X
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If, however, with a given force, both the directions are definitely given in which we
are to break it up into components, then these components can be uniquely determined.

Let OC represent the given force R and OX and OY be two given directions (not
necessarily perpendicular) making angles  and  respectively with OC, on opposite sides
of it, along which we are to find the components of R.

Complete the parallelogram OACB with

diagonal OC and sides along OX and OY. Then, by

parallelogram of forces, OA and OB represent the

required components P and Q, having R as their
resultant.

Now, in the  we have

and 

By sine formula*, we have

 and 

Thus, the components of R along OX and OY are and 

respectively.

* Sine formula : In a triangle ABC,

where a=BC, b=AC and c=AB.

You will be dealing with this formula in Trigonometry in
higher classes. C

A

B a

bc

Y

APO X

Q

B

R

C

Fig. 8.5
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8.9 Resolution of a force into two perpendicular components

If the two components of a given force are along two perpendicular directions, then
these components are called the resolved parts of the force along those directions.

If we have  in the last article, then P and Q are the resolved parts of
the force R. Then from the result obtained in the previous article, we have

(  )

and

Thus, the resolved parts of R along and perpendicular
to OX are respectively and   being the
angle between R and OX.

Observe that the resolved part of a force in any
direction = the force × the cosine of the angle which the
force makes with the given direction.

Also, the resolved part of a force R in a direction at
right angles to itself = R cos 90º = 0. Thus, a force has
no effect in a direction perpendicular to itself.

Hence, any given force R is mathematically equivalent to (and accordingly, can be
replaced, whenever needed, by) two resolved parts, one  along a direction OX
at an angle  to it, and another   perpendicular to OX. This mode of replacing,
a given force by its two equivalent resolved parts in two suitable perpendicular directions
is particularly useful in finding the resultant of several forces simultaneously acting at a
point, as is shown in section 8.13.

Note : Resolved part of the force R represented by OC, along the direction OX is
represented by OA where A is the foot of perpendicular from C upon OX.

Theorem.  The algebraic sum of the resolved parts of any two forces acting at a
point, along any direction, is equal to the resolved
part of their resultant, in that direction.

Let OA and OB represent the two forces
P and Q acting at a point O. Complete the
parallelogram OACB. Then the diagonal OC
represents the resultant R.

Let OX be a line drawn in any direction
through O and let AL, BM and CN be the

Fig. 8.6
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O

R

X

Y

C

Fig. 8.7
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O

Q
D

R

P
A
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perpendiculars drawn on it from A, B and C respectively so that OL, OM and ON
represent the resolved parts of P, Q and R respectively along OX.

From Fig. 8.7, we have

OM=AD=LN           

Now,        ON=OL +LN=OL + OM

Thus, the resolved part of the resultant R along OX is equal to the algebraic sum
of the resolved parts of P and Q along OX.

Corollary :  The above theorem may be generalised as follows :

If any number of forces act at a point, the algebraic sum of their resolved parts in
any direction is equal to the resolved part of their resultant in that direction.

8.10  Equilibrium of Concurrent Forces

Recall that if a number of forces acting upon a body (or a particle) keep it at rest,
then the forces are said to be in equilibrium.

We know that a number of forces acting on a body may be compounded into a
single force, called the resultant of the forces, by the parallelogram law of forces or by
the method of resolved parts. If the body is to be at rest, then the resultant of all the
forces acting on it must vanish.

When three concurrent forces are in equilibrium, we have a useful law called
‘‘Triangle of forces’’ which can be applied in such a situation. This law along with its
converse, is discussed below.

8.11  Triangle of Forces

Statement : If three forces acting at a point be such as can be represented in
magnitude, direction and sense (but not in position) by the three sides of a triangle taken
in order, then the forces are in equilibrium.

Fig. 8.8
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Let the three forces P, Q, R acting at a point O be represented in magnitude,
direction and sense respectively by the sides AB, BC, CA taken in order of the triangle
ABC. Complete the parallelogram ABCD. Since AD is equal and parallel to BC, the
force Q which is represented by BC can as well be represented in magnitude and direction
by AD.

By parallelogram of forces, resultant of P and Q is represented by AC. Thus, we
are left with two forces acting at the point A, represented by AC and CA. But, AC and
CA are equal in magnitude and opposite in direction and hence they balance each other.
Thus, the resultant of P, Q, R must vanish.

Hence, the three forces are in equilibrium.

8.12  Converse of Triangle of Forces

Statement :  If three forces acting at a point be in equilibrium, then they can be
represented in magnitude, direction and sense by the three sides of a triangle, taken in
order.

Let the three forces P, Q, R acting at O be in equilibrium. Draw the line segments
AB, BC, parallel to the directions of P and Q, to represent these forces respectively in
magnitude, direction and sense, on any chosen scale. Complete the parallelogram ABCD
and join the diagonal AC.

Now, AD being equal and parallel to BC, represents the force Q as well in
magnitude, direction and sense.

Since the three forces P, Q, R are in equilibrium, R is equal and opposite to the
resultant of P and Q and therefore must be represented in magnitude, direction and sense
by CA.

Thus, we have a triangle ABC whose sides AB, BC and CA taken in order represent
the forces P, Q and R respectively and this proves the theorem.

Fig. 8.9
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Note 1 : If we draw any other triangle having its sides parallel to the directions of the forces
P, Q and R, then this triangle will be similiar to  and accordingly the
corresponding sides will be proportional. And, as such the three forces in this case
may as well be represented in magnitude, direction and sense by the sides of that
triangle, taken in order.

Note 2 : If three forces acting at a point be such that the sum of two of them is less
than the third, then they can never be in equilibrium, for they cannot be
represented by the sides of a triangle.

8.13 Resultant of several coplanar forces simultaneously acting at
a point

Let a number of coplanar forces P
1
, P

2
, P

3
, P

4
, etc. be simultaneously acting at a

point O and let their directions make respectively angles  ........... with a

suitably chosen direction OX in the plane. And, let OY be perpendicular to OX.

We can now replace the force P
1
 by its resolved parts  along OX and

 along OY. Similarly, P
2
 may be replaced by  along OX and 

along OY and so on for each of the forces.

Let R be the resultant of the given forces and let it make an angle  with OX.

Since the resolved parts of R along OX and OY are equal to the algebraic sum of
the resolved parts of the component forces along the same directions, we have

1 2 3 4

X

P
1

R

P
2

P
3

Y

P
4

X'

Y'
Fig. 8.10
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and

Hence,  or  .............. (i)

and  .......... (ii)

Equations (i) and (ii) give respectively the magnitude and direction of the resultant.

Corollary :   Conditions of equilibrium of concurrent and coplanar forces.

When X=O and Y=O, then R=O.

Therefore, the forces are in equilibrium if the sum of their resolved parts along two
perpendicular directions OX and OY vanish separately.

Conversely, if the forces are in equilibrium i.e. R=O, then it follows from (i) that
X=O and Y=O.

Thus, the necessary and sufficient condition for the equilibrium of the concurrent and
coplanar forces are X=O and Y=O.

Example 1. Find the magnitude of the resultant of two forces 8 kgwt and 7 kg wt
acting at an angle of 60º to each other.

Solution : Let R be the resultant of the two forces.

Then,

  

  

  = 13 kg wt.

Example 2. Two forces whose magnitudes are P and act on a particle in directions
inclined at an angle of 135º to each other. Find the magnitude and direction
of the resultant.

Solution : Let R be the resultant of the two forces and let it make an angle  with
the direction of the force P.

Then, we have
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(   cos 135º = cos(180º–45º)

= – cos 45º

And,

)

     

     

    

Hence, the resultant is a force equal to P at right angles to the direction of the first
component.

Example 3. Find the greatest and the least resultants of two forces whose magnitudes
are 12kg wt and 8 kg wt.

Solution : The greatest resultant = 12+8

= 20 kg wt

and the least resultant =12–8

= 4 kg wt.

Example 4. Two forces acting at a point have got their resultant 10 when acting at
right angles and their least resultant is 2. Find their greatest resultant and
also the resultant when they act at an angle 60º to each other.

Solution : Let P and Q be the two forces (P>Q).

Then, while acting perpendicularly, we have

 resultant = 10

 P2 + Q2 = 100 ........................ (i)

Also, their least resultant   = 2

  P–Q=2

(P–Q)2 = 22

P2+Q2–2PQ = 4
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100 – 2PQ = 4         (using (i))

2PQ = 100 – 4

    ........................(ii)

Now, the greatest resultant = 

 

     (using (i) & (ii))

Also, when they act at an angle of 60º,

their resultant 

Example 5. A force of 10 kg wt is inclined at an angle of 30º to the horizontal. Find
its resolved parts along the horizontal and the vertical directions.

Solution : The resolved parts along the horizontal and the vertical directions are 10

cos 30º kg wt and 10 sin 30º kg wt respectively i.e.  kg wt and 5
kg wt.

Example 6. Forces of magnitudes 2, , 5,  and 2 kg wt respectively act at one
angular point of a regular hexagon towards the five other angular points.
Find the magnitude and direction of their resultant.

Solution : Let ABCDEF be the regular
hexagon and let the given forces
act at the point A as shown in the
figure.

Let the resultant R make an angle
 with the side AB.

Now, resolving the given forces
along two perpendicular lines AB
and AE, we have

    

  

Fig. 8.11

B

C

A

F

DE

2

5

30º60º
90º 120º

2

Higher Mathematics for Class – X



171

  

and

  

  

R=10 kg wt.

Also,

Hence, the resultant is 10 kg wt and acts along AD.

Example 7. Two forces of magnitudes 3P and 2P respectively have a resultant R. If
the first one is doubled, the magnitude of the resultant is doubled. Find
the angle between the forces.

Solution : Let  be the angle between the forces.

Then, we have

    .............. (i)

And,

  ............. (ii)

From (i) and (ii), we have

.
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Example 8. The sum of two forces is 18N and the resultant, whose direction is
perpendicular to the lesser of the two forces, is 12N. Find the magnitudes
of the two forces.

Solution : Let P and Q be the two forces (Q>P).

Then, P + Q =18 .............. (i)

Also, from the figure 8.12, we have in the rt. BAC,

BC2 = AB2 + AC2

Q2 = P2 + 122

Q2 – P2 = 144

(Q + P) (Q – P) = 144

18(Q – P) = 144   [using (i)]

Q – P = 8 ............ (ii)

Solving (i) and (ii), we have Q=13 and P = 5

the magnitudes of the two forces are 13N and 5N.

EXERCISE 8.1

1. Find the magnitude of the resultant of the following pair of forces inclined to each
other at the given angle.

(i) 3N and 4N, 60º

(ii) 10 kg wt and  kg wt, 45º

(iii) 24N and 7N, 90º

(iv) 5N and 9N, 120º

(v) 8 kg wt and  kg wt, 150º.

2. Find the resolved parts of each of the following forces whose inclination to one of
the resolved parts is given alongside :

(i) 16N, 30º (ii)  50kg wt, 60º   (iii)  20N, 120º   (iv)   kg wt, 135º.

3. Find the angle between two equal forces P when their resultant is equal to P.

(Equal forces means forces with equal magnitude).

4. Two forces acting at an angle of 60º have a resultant equal to  kg wt. If one of
the forces is 2 kg wt, find the other.

Fig. 8.12
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5. Two equal forces act on a particle. Find the angle between them if the square of
their resultant is equal to three times their product.

6. Find the magnitudes of two forces such that, if they act at right angles, their resultant
is  and if they act at an angle of 60º, their resultant is 

7. The greatest and the least resultants of two forces of given magnitudes acting at a
point are 16 kg wt and 4 kg wt respectively. Find the magnitude of their resultant
when they are at an angle of 60º with one another.

8. Two forces act at an angle of 120º. If the greater force is 80N and the resultant is at
right angles to the smaller, find the smaller force.

9. Two forces equal to 2P and P respectively act on a particle. If the first is doubled
and the second is increased by 12, the direction of the resultant remains unaltered.
Find the value of P.

10. If the resultant of two forces acting on a particle be at right angles to one of them
and its magnitude be one-third of the magnitude of the other, show that the ratio of
the larger force to the smaller is .

11. The resultant of forces P and Q is R; if Q is doubled, R is doubled and if Q is
reversed, R is again doubled. Show that

12. Resolve a force of 50N into two forces making angles of 90º and 45º with it on
opposite sides.

13. If a force P is resolved into two component forces and if one component is at right
angles to the force and equal to it in magnitude, find the magnitude and direction of
the other component.

14. Forces P and Q, whose resultant is R, act at a point O. If any transversal cuts the
line of action of the forces P, Q, R at the points L, M, N respectively, then show
that

.

15. Forces equal to 3N, 4N, 5N and 6N act on a particle in directions respectively due
north, south, east and west. Find the magnitude and direction of the resultant.

16. Forces equal to 1 kg wt, 2 kg wt and  kg wt act at a point A in the directions
AP, AQ and AR respectively. If  and  find the magnitude
and direction of the resultant.
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17. Forces 2P, 3P and 4P act at a point in directions parallel to the sides of an equilateral

triangle taken in order. Show that the magnitude of the resultant is 

18. Forces of magnitudes 1, 2, 3, 4, 5 respectively act at the angular point A of a regular
hexagon ABCDEF towards the other angular points taken in order. Show that the

magnitude of the resultant is 310192   and ,
3

345θtan   where θ  is the

angle which the resultant makes with AB.

19. The resultant of two forces P and Q is Q3  at an angle 30º with P. Show that

either P=Q or P=2Q.

ANSWERS

1. (i) N37     (ii)  105  kg wt   (iii)  25N   (iv)  N61    (v)  134  kg wt.

2. (i)   8NN,38 (ii)   25 kg wt, 325  kg wt

(iii)  –10N, N310 (iv)   –5kg wt, 5 kg wt.

3. 120º 4.  2 kg wt 5. 60º

6. 3N and 1N 7.  14 kg wt 8.  40 kg wt

9. 12 12.  50N, N250

13.  P2  at an angle of 45º with the direction of P..

15. N2  due south-west. 16.  4 kg wt in the direction AQ.

––––––––
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