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CHAPTER-1
BINARY OPERATIONS

1.1 Introduction

Many interesting characteristics of the number system are associated with the four
fundamental operations of addition, subtraction, multiplication and division. Let us investigate
what such an operation does in the number system. Take the case of addition in the system
of real numbers. Although we are quite familiar with the process of addition, still it is not
easy to give a formal definition of addition of real numbers. You know that any two given
real numbers can be added together. In other words, there is no pair of real numbers
that cannot be added together. Also for any two real numbers, the sum (the result of
adding together the numbers) is again a real number. So, given any two real numbers
say, x and ), we get on adding, another real number x+y. Thus, addition can be looked
upon as a rule of forming a real number x+y corresponding to a given pair (x, y) of
real numbers. The other three operations may also be treated similarly. Only in the case
of division, the given pair of numbers (x, y) should be such that y =0 (to avoid division
by zero). Generalising the idea of these four fundamental operations, we shall develop in
this chapter, the concept of binary operations on arbitrary sets and discuss their
classification according to the properties they possess.

1.2 Binary Operation on a set

Definition 1.1 Let S be a non-empty set and ‘0’ be a mapping of the cartesian
product SxS to S. Then ‘o0’ is called a binary operation or binary composition or an
internal composition on the set S.

Thus, a binary operation o on the set S, assigns to each ordered pair (x, y)e SxS a
uniquely determined element say, z€S. We denote the o-image of (x, y) i.e. the element
z by xoy and call it the composite (or product) of x and y under o.
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As examples, we can define binary operations o and * on the set Z of integers by
xo0y = x+ty
and x% =xy, x yel

These binary operations are nothing but the usual addition and multiplication of
integers.

According to the definition, division is not a binary operation on Z for division does
not assign any integer to the ordered pair of integers (2, 3) or (3, 0). Again the
impossibility of division by zero restricts division from being a binary operation on R also.
However if we exclude zero from the set of real numbers, then division becomes a binary
operation on the resulting set R* of all non-zero real numbers, in as much as the quotient
of a non-zero real number by a non-zero real number is a non-zero real number.

We can define several mappings from a given set to another. Likewise we can define
several binary operations on a given set. For instance, on the infinite set R of real numbers,
infinite number of binary operations may be defined.

An example of binary operation free from usual addition, multiplication etc. is that
of set intersection or union.

Let P(S) be the set of all subsets of a given set S. Then the maps (A,B) > ANB
and (A,B) > AUB where A, B are subsets of S, are binary operations on P(S), for the
intersection or union of any two subsets of S is again a subset of S.

Definition 1.2 Let A and S be non-empty sets and f:AxS—S be a mapping.
Then f'is called an external binary operation on S over A.

Thus, an external binary operation f on S over A assigns to each ordered pair
(a,x) e AxS a uniquely determined element say, y= f(a,x)eS. Here, fla,x) is denoted
multiplicatively as ax.

Multiplication of a vector by a scalar is an example of external binary operation on
the set of vectors over the set of scalars.

Note : Henceforth “binary operation” will mean as defined in definition 1.1 and the word
external will be specifically mentioned while considering the case of external binary
operation.

Definition 1.3 A set equipped with one or more binary operations (external or
internal) is known as an algebraic structure.

If o is a binary operation on a set S, then the pair (S, o) is an algebraic structure.
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1.3 Associativity and Commutativity

Definition 1.4 A binary operation o on a set S is said to be associative if (xoy)oz
= xo(yoz) for every x, ), z€S.

Definition 1.5 A binary operation o on a set S is said to be commutative if
xoy=yox for every x,yeS.

The usual addition and multiplication on the set Z of integers are associative as well
as commutative for

(at+b)+c = a+(b+c), (ab)c=a(bc) for all a, b, ceZ,
and a+b=b+a, ab=ba for all a, beZ.

Similarly, the usual addition and multiplication on Q (or R) are also associative as
well as commutative. Subtraction on Z (or Q or R) is a binary operation which is neither
associative nor commutative.

In fact, if @, b, ceZ, then
a—(b—c)#(a—b)—c whenever .«
and a-bzb—a whenever 4 =p.

Example 1. Let = be the binary operation defined on the set Q of rational numbers by
xxpy = x+y-=xp; x,yeQ. Show that * is associative as well as commutative.

Solution : Let x, y, zeQ. Then
(exy)z = (xty-—xy)* z
= axz where a=x+y—xy
= atz—az
= (xhy=)tz—(xty—=x)z
= xty—-xytz—zx—yz+xyz
= xtytz—xy—-yz—zx+txyz
and xx(y*z) = x#(y+z—yz)
= x+(y+tz—yz)—x(y+z—yz)
= Xtytz—yz—xy-zx+txyz
= xtytz—xy—yz—zx+txyz

Hence (x#y)+z = x#(y*z) for all x, ), zeQ and accordingly * is associative.
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Again, xxy = x+ty—xy
= ytx—yx
= ysxx for all x, yeQ
Hence * is commutative as well.
Example 2. Show that the binary operation o defined on Z by
xoy=x+2y; x,yeZ is neither associative nor commutative.
Solution : For o to be associative we should have
(xoy)oz = xo(yoz), for every x,y,z€Z.
Now, LHS = (x+2y)oz
= x+2y+2z
And RHS = xo(y+2z2)
= x+2(y+22)
= x+2y+4z
Taking the particular case where x=y=z=1, we have
LHS = 1+2+2=5 and RHS = 1+2+4=7
Thus, lo(lol) # (lol)ol and hence o is not associative.
In order that o is commutative, we should have
xoy=yox, for all x,yeZ.
But xop=x+2y and yox=y+2x so that when x=0, y=1,
we have xoy=2=#1=yox. Hence o is not commutative.
1.3.1 Generalised product under an Associative Binary Operation
Let o be an associative binary operation on a set S. Then we can define inductively,
the composite or product of any n elements x;,x,,......., x, €S under o as follows :
X,0X,0%3 = (X,0x, )0X;
X,00,0X;00, = (2,0, 003 )0X,4

n—

By making repeated use of associativity, one can see that in the product
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X[0X50........ ox, the factors may be grouped in any manner without altering the value of
the product so long as the order of the elements is unchanged. Besides being associative,
if o is commutative also, then the order of the factors may also be changed randomly
without altering the value of the product.

1.3.2 Power of an Element relative to an Associative Binary
Operation

Let o be an associative binary operation on a set S. Then for any x €S, and for
any ne N, the nth power of x denoted by x" is defined by

x" = xoxo0......0x (n factors each equal to x)
It can be easily proved that
xMox™ = x™" for all m, neN.

In case the associative binary operation is denoted additively, the nth multiple
(additive power) of x denoted by nx is defined by nx=x+x+.......... +x (n terms).

In this case also we can easily prove that

mx+nx=(m+n)x, forall m, neN.
1.4 Distributivity

Definition 1.6 Let = and o be two binary operations on a set S. Then we say
that = is distributive over o, if

xX%(y0z) = (X%))O(X%*Z) eveevrrerrrerriaiaans (1)
and (y0z)#x = (Y*X)O(Z%X) werevrreerrerrreennanns (11)
forall  x,y,z€S.

Thus, distributivity is a relation that exists between two binary operations. The
conditions (1) and (ii) are known as left distributive law and right distributive law respectively
and the two together are referred to as distributive law. If * is commutative, the two
conditions are identical.

In the set of real numbers, multiplication is distributive over addition and also over
subtraction, but addition is not distributive over multiplication. In the power set P(S) of a
set S, the binary operation of union distributes over intersection and vice-versa i.e.

AUBNC)=(AUB)NAUC)
and ANBUC)=(ANB)U(ANC), for all A,B,CeP(S).

Example 3. Two binary operations, addition and multiplication are defined on the
set NxN as follows :
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(a, b)+(c, d)=(a+c, b+d)
and  (a, b)x(c, d)=(ac+bd, ad+bc)
Prove that the multiplication distributes over the addition.
Solution :  We are to prove that for all a,b,c,d,e, f €N,
(a,b)x[(c,d)+(e, f)]=(a,b)x(c,d) +(a,b)x (e, f)
Now, LHS = (a,b)x(c+e, d+f)
=(a(c+e)+b(d+f), a(d+ f)+b(c+e))
=(ac+ae+bd+bf, ad+af +bc+be)
and RHS =(ac+bd, ad+bc)+(ae+bf, af +be)
=(ac+bd +ae+bf, ad+bc+af +be)
=(ac+ae+bd+bf, ad+af +bc+be)
LHS=RHS

Hence the result.
1.5 Subsets closed under a Binary Operation

Definition 1.7 Let o be a binary operation on a set S and H be a subset of S.
Then H is said to be closed under o, if for every pair (a,b) of elements a,bcH, the
composite aob is also an element of H i.e. if (a,b)e HxH = aob € H.

For example, consider the binary operation of addition on the set R of all real
numbers. As a subset of R, the set Q of all rational numbers is closed under addition for
the sum of any two rational numbers is again a rational number. However, the set Q° of
all irrational numbers is not closed under addition for the sum of two irrational numbers
needs not be an irrational number. For instance, 2++/3 and 2—./3 are irrational numbers
whereas their sum 4 is not an irrational number.

Note : For the algebraic structure (S,0), if H is a subset of S closed under o, then
o0 is a binary operation on H also i.e. (H,0) is also an algebraic structure.

Example 4. Show that the set H={1,0,—1} is closed under multiplication but not
under addition.

Solution :  Here, HxH={(1,1), (1, 0), (1,-1), (0, 1), (0,0), (0, —1), (-1, 1), (-1, 0),
-1-1)}
For each ordered pair (a,b)e HxH, we see that the product ab is 1 or

0 or —1. This means that z»cH whenever (a,b)e HxH. Hence H is
closed under multiplication.
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For H to be closed under addition, we should have 4 +pecH

whenever (a,b)e HxH. However, (11)eHxH and 1+1=2¢H.

Hence, H is not closed under addition.

Example 5.

Solution :

Remark :

Example 6.

Solution :

Let S = {0,1,2,3,4,5} and ‘+ be defined by
a+¢b=c, a,beS

where ¢ is the remainder when a+b is divided by 6. Prove that +, is a

binary operation on S and that the subset H={0,2,4} of S is closed under

+6_

When any integer is divided by 6, the remainder will be one of the six
numbers 0, 1, 2, 3, 4, 5. So, for any two integers a and b, if a+b is
divided by 6, the remainder will be a member of the given set S.
Consequently a+¢b=ceS whenever (a,b)eSxS and therefore +, is
a binary operation on S.

Again, HxH= {(0,0), (0,2), (0.4), (2,0), (2,2), (2,4), (4,0), (4.2), (4.4}

And 0+,0=0 2+.0=2  4+0=4
0+2=2 2+2=4  4+2=0
0+4=4 2+4=0 4+ 4=2

Thus, at+beH for any (a, b))e HxH.  Hence H is closed under +,.
The binary operation ‘+ . is known as “addition modulo 6”.

Let (S,0) be an algebraic structure and H be a finite subset of S. To
examine whether H is closed under o or not, a short cut method may be
adopted by forming what is called the composition table. The method is
illustrated in the following example.

A binary operation X, (multiplication modulo 5) is defined on the set
W of whole numbers by

axsb=c; a,beW
where c is the remainder when ab is divided by 5.
Show that H={1, 2, 3, 4} is closed under this binary operation.

We can exhibit all possible multiplications in the form of the composition
table shown below :



8 Higher Mathematics for Class — X

x| 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

[Here, the composite of an entry in the first column (left of the vertical line) and an
entry in the first row (above the horizontal line) is entered at the intersection of the
corresponding row and column. For instance, the composite of 2 in the first column and
3 in the first row is 1, the second row (in which 2 occurs) third column (in which 3
occurs) entry inside the lines.]

Since each entry in the above table is a member of H, therefore H is closed under
the binary composition.
1.6 Identity Element

An algebraic structure (S,0) is said to be with identity element if there exists ¢ e S
such that xoe=eox=1x, for every x¢S.

For the algebraic structure (Z,+), 0(zero) is the identity element since
a+0=0+ag=q for every geZ And for (Q,.), 1 is the identity element since
x.1=1.x=x,for every xeQ.

Again consider the algebraic structure (N,+) where N is the set of all natural numbers.
There is no identity element for this structure as () ¢ N. Thus, identity element may or
may not exist in a given algebraic structure.

Theorem 1.1 The identity element for an algebraic structure, if it exists, is unique.

Proof : Let (S,0) be an algebraic structure. Let if possible, e, and e, be identity
elements in S. Then
eo0e, =¢, since e, is an identity element,
and €0e, =e,, since e, is an identity element.
But ¢,0e, is uniquely determined as the composite of e, and e, and so ¢ =e,.
Hence the theorem.

1.7 Inverse of an Element

Let (S,0) be an algebraic structure with identity element e and let x be an element
of S. An element y eSS if it exists, is said to be an inverse of x if X0y = yox =e.
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Usually, inverse of x is denoted by x' and is specified by yox! = x lox = ¢. And
any two elements x and y in S are inverse of each other if and only if X0y = yox =e. It
follows that the identity element e is the inverse of itself as eoe=e.

In (Z,+), every element has an inverse. In fact for ¢ € Z, —a is the inverse since
a+(—a)=(—a)+a=0, the identity element. And in (R,.), every non-zero element x has

an inverse T eR.

Theorem 1.2 If (S,0) is an algebraic structure with identity, in which the binary
operation o is associative, then the inverse of an element of S if it exists, is unique.

Proof : Suppose y and )’ are inverses of the same element y ¢S,
Then, x0y =yox=e
and xo0y’' = y'ox=e
where ¢ e § is the identity element.
Now, (yox)oy' = eoy'=y’ .......... (1)
and  yo(x0)') = yoe=y ........... (i1)
Since o is associative,
(yox)oy” = yo(xoy’)
y=y (from (i) and (i1)).
This proves the theorem.

In an algebraic structure with identity, an element is said to be invertible
if its inverse exists.

Theorem 1.3 Let (S,0) be an algebraic structure with identity, in which o is
associative. If x and y are two invertible elements of S, then xoy is also invertible and
(xoy)! = ylox’.

Proof : Let e be the identity element in S.

Then, xox '=x"lox=e

and yoy!' = yloy=e

Now, (xoy) o (y'ox") = xo (yoy Hox!' (by associativity)
= (xoe)ox_1
= xox ™'

= e
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and (y"'ox No(xoy) = y~'o(x'ox)oy
= ylo(eoy)
= yloy
=e

Thus, (xoy)o(y'ox™') = (y'ox")o(xoy)=e

Hence xoy and y'ox™' are inverse of each other.

()coy)_1 = y_lox_1

This proves the theorem.

Example 7. A binary operation o is defined on Q by xoy :%; x,y€qQ.
Find the identity element and the inverse of % if they exist.

Solution : Let e denote the identity element. Then for any x € Q

eox=xoe=x
= xe X
5

= e=5€Q

Thus, the identity element is 5.

Again, let a be the inverse of % Then

a02=5 (the identity clement)

3

ax?2
3 _
= 5 =5
_, 2a_»s

3
= GZ%GQ

Thus, the inverse of % is %

Example 8. 1f S is a non-empty set, find the identity element (if it exists) for the
algebraic structure (P(S),lJ). Also examine whether B! exists or not for

any subset B of S.
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Let E denote the identity element. Then for any A € P(S)

i.e. for any subset A of S, EUA =A |

But this relation holds for arbitrary subset A if and only if E is the empty
set. So, E =¢ is the identity element in P(S).

Again, B'UB=¢
= B'=¢ and B=¢
Thus, B exists if and only if B=¢.

EXERCISE 1.1

1. IfE is the set of all even natural numbers and F, the set of all odd natural numbers,
answer the following :

(a)
(b)

(©

(d)

Is addition a binary operation on F ?

Is multiplication a binary operation on F ? If yes, find whether identity element
exists or not.

Is addition a binary operation on E ? If yes, find whether identity element exists
or not.

Is multiplication a binary operation on E ? If yes, find whether identity element
exists or not.

2. State whether each of the following definitions of * gives a binary operation on N or
not. Give justification of your answer :

@)
(i)
(iif)
(iv)
v)
(Vi)
(vii)

(vili)

axb=a->b
axb=|a-b
a xb=a
axb=»~b

a *b = atab
axb=a

a *b = ab-1
a b =ab+l.
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Prove that the following binary operations on N are commutative but not
associative :

1) axb=2a+2b (a,b e N)
(i) axb=2%"

@) a *b = (a-b)

(iv) a*b=ab+l.

Show that the binary operation on N defined by a#b=b is associative but not
commutative.

Show that each of the following binary operation * on Q is neither associative nor
commutative :

® xxy=x-y+tl (xyeQ

(i1) x %y =2x+ 3y

(ii1) X%y =x+xy

iv) x=*y=x7"

Prove that the binary operation o on Z defined by aob = a+b-5 is associative as
well as commutative.

Prove that the binary operation * defined on Z by a*b = 3a+5b is neither associative
nor commutative. Also prove that the usual multiplication on Z distributes over .

Let binary operations o and * on R be defined by
xoy =2x +2yand x *y = x.

Show that o is commutative but not associative and * is associative but not
commutative. Also show that o distributes over =*.

Prove that the binary operation o on N defined by aob= maximum of @ and b is
associative and commutative. Find the identity element and invertible elements of (N,0).

Investigate the set of integers, the set of rational numbers and the set of irrational
numbers for closure under the following binary operations :

@) addition  (ii) subtraction (i) multiplication (iv) division.
Prove that there is no non-empty finite subset of N closed under addition.

Prove that the only non-empty finite subset of N closed under multiplication is {1}.
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Find whether the identity element exists or not for each of the following algebraic
structures :

(1) (N,+) (i) (N,.) (i) (Z:1) (iv) (Z.)
v) Q1) vi) Q.. (vii) (P(S),MN) (vii) (P(S),U)
(S is any set and P(S) is the power set of S).

Let S={1, 2, 3, 4, 5, 6, 7}. Find the identity element of the algebraic structure
(P(S),N) . Also find the inverse of A={2,4,6}, if it exists.

Consider the binary operation * on Q defined by
X®y = XtTy-x).

Find the identity element of (Q, *). Also find x ' for x € Q. For what value of x
does the inverse not exist ?

Form the composition table for the set S={1, 2, 3, 4, 5, 6} with respect to the
binary operation of multiplication modulo 7. Deduce that S is closed under the
operation. From the table, find the identity element and the inverse of each element
of S. Also calculate 2° in S.

Form the composition table for the set S={0, 1, 2, 3, 4, 5} with respect to the
binary operation of addition modulo 6. From the table, find the identity element and
the inverse of each element of S.

Let a binary operation * on N be defined by
a*b= HCF of a and b.

Show by means of a composition table that the set H={1, 2, 3, 4, 5, 6} is closed
under .

A binary operation o on N, is defined by
aob = LCM of a and b.

Form a composition table for the set H={1, 2, 3, 4, 5} with respect to o. State
whether H is closed under o or not.

Prove that the set S={3n:n€Z} is closed under usual addition and multiplication.
Examine the algebraic structures (S,+) and (8S,.) for existence of identity and invertible
elements.
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ANSWER

(@ No, (b) Yes, Identity element is 1 (e F).
(c) Yes, Identity does not exist. (d) Yes, Identity does not exist.
(i) No, for 1,2€N but 1*¥2=1-2=1¢N.

(i) No, for 2€ N but 2#2=(2-2=0¢ N.

@) Yes, for axb=a’h€N whenever a,beN.

(iv) Yes, for axb=b€N whenever a,b€N.

(v)  Yes, a+tabeN whenever a,beN.

(vi) Yes, a’eN whenever a,beN.

(vi) No, 1*1=1-1=0¢ N.

(viii) Yes, ab+1€N whenever a,beN.

Identity =1, 1 is the only invertible element.

Z, Q are closed under addition, subtraction and maltiplication but not under division.
Qe is not closed under any of the compositions.

(1)  Does not exist (i) Exists (1) (1) Exists (0) (iv) Exists (1)
(v) Exists (0) (vi) Exists (1) (vii) Exists (S) (viii) Exists ().
Identity = S, A™' does not exist.

Identity =0, x ' = ﬁ, x' does not exist when x=1.
X, 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

The identity element is 1. The inverses of 1, 2, 3, 4, 5, 6 are 1, 4, 5, 2, 3, 6
respectively. 2°=1e€S.



Binary Operations 15

+ 0 1 2 3 4 5
o]l o 1 2 3 4 5
11 o2 3 4 5 0
2 |2 3 4 5 0 1
3013 4 5 0o 1 2
4 |4 5 o 1 2 3
515 o 1 2 3 4

The identity element is 0. The inverses of 0,1,2,3,4,5 are 0,5,4,3,2,1 respectively.
0 1 2 3 4 5

1 1 2 3 4 5
2 2 2 6 4 10
3 3 6 3 12 15
4 4 4 12 4 20

5 5 10 15 20 5

H is not closed under o for there are entries in the composition table which are not
members of H.

For (S,+), the identity is 0 and inverse of any element 37 is 3(-n) i.e. —3n.

For (8,.), the identity does not exist and hence inverse of any element does not exist.
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CHAPTER 2
SEQUENCES, A.P., GP. AND H.P.

2.1 Introduction

We have discussed something about sequences and arithmetic progression (A.P.) in
the Mathematics (general course) for class-X. In this chapter, we shall discuss again
something more about these terms. We shall also discuss about geometric progression
(G.P.), harmonic progression (H.P.) and find the sum of some important finite series.

2.2 Sequence

Recall that a sequence is an ordered set of real numbers a,, a,, a,, ..., a , ... which
is formed according to some specific rule so that corresponding to any definite positive
integer n, there is a definite number a . The numbers a, a,, a,, ..., a_,... are called
terms or elements or members of the sequence.

Consider the set of numbers %,%,%, %, ..., which is obviously an ordered set. Now

let us see the relation between any particular element of the set and its position in the
set. For this set, we can write

gt
727 1+1
g =2__2
2737 2+1
da=d-_ 3
3747341

Following the pattern, we see that

n
n+l1

a, =
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Thus, we see that the above set of numbers are formed according to the specific

rule a_(nth element of the set) =#. So, it is a sequence.

A sequence is said to be finite if the number of its elements is finite, otherwise it is

said to be infinite. A finite sequence a, a,, a and an

is denoted by {q,}*

3 o Gp =1
infinite sequence a,, a,, a,, ..., a, ... is denoted by {q,},_, or simply by {a }, where

n=1

a_is the nth term of the sequence. By assigning to n, the values 1, 2, 3, ...... successively
in the formula for a, we can determine the elements of the sequence {a }. In general, if
the nth term of a particular sequence is known, then by assigning different natural numbers
to n, all the terms of the sequence, and hence the sequence may be determined.
Therefore, the nth term in any sequence is called the general term of the sequence.

Some examples of sequence are given below :

(a) Finite sequences

(1) 1, 29 39 cte 50 le {l’l}i(il
(ii) 127 227 327 "'7102 i.e. {nz}il(il

(i) 2, 4,6, .. 150ie 7%

. 100
11 . JED
b 4 90 100 l.e. n

n=l1

W=

(IV) - 15 %5 -
(b) Infinite sequences
O 1,3,5 .., 2n-1..ie {2n-1

A {L}
(11) 2’ 22 » 23 LI 2n LI le 2n
1 1 1 1
(]11) 1, 4, 9, ceey n2 e le { 2}

) 1,1, 11, ., i {1y

Example 1. Find the general term (i.e. the nth term) of each of the following sequences

- 12 3 4
O 3357017
1,3, 1
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. . _1_ 1
Solution : (i) We have @ =75 21
422
5 2741
as :i: 3
10 3241
o4 4
YT 42

Following the pattern, the general term of the sequence is given by
n
n?+1
(i) Wehave g =1=2-1=2+(-1)
ay=3=2+1=2+(-1)°
a;=1=2-1=2+(-1)°
a, =3=2+1=2+(-1*
and so on.

a, =

Hence, the general term of the sequence is given by

a, =2+(-1)"
1, if n is odd
or an:{3, if n is even.
Example 2. Find the first five terms of each of the following sequences :
2
. n .
@ {n+1} i) {i+-2}
2
Solution : (i) We have a, ="
n+1
gl 1
1+l 2
_ 2 4
27241 3
o329
373+1 4
gyt 16
Y7441 S
g5 2
7541 6
. 1 4 9 16
Hence, the first five terms of the given sequence are 3325 and

[\®]
b
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(i1) We have a =1+(-2)"
a =1+(-2)' =1-2=-1
ay=1+(=2)=1+4=5
ay=1+(=2)° =1-8=-7
a,=1+(-2)* =1+16=17

as =1+(-2)> =1-32=-31
Hence, the first five terms of the given sequence are —1, 5, —7, 17 and -31.

20
n=1"

Example 3. Determine the sequence {n(n+3)}
Solution : We have a, =n(n +3)
a, =1x(1+3)=4
a, =2x(2+3)=10
a3 =3x(3+3)=18

a, =4x(4+3)=28

azo = 20>< (20+3) :460
Hence, given sequence is 4, 10, 18, 28, ..., 460.

EXERCISE 2.1

1. Find the first five terms of each of the following sequences :

O ey} @ o) @ {25 @ 1

2 1"
) {2”+3} (vi) {3,,:%} (vii) {(an_l)Z} (vii) {(n') }

2. Find the first four terms of each of the following sequences whose general term is :

. n—1 .. n+1 .. 1 . n
0w =t (i) 2+ (i) o7 V) 2

1 1

O nD) () Tttt (i) JrToym (vl 1_(—;)"
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Find the general term (i.e. the nth term) of each of the following sequences :

, . 135709

@ 0,3,8,15,24, .. () L 2345 -

1 11 1 .

(]11) 19 59 Za§9 Ea oo (IV) 1, 0, 1, 0, 1, 0, cee
1 3 57 ~ 35 79

v) A6 R (vi) 2°16° 367 64"

. 3 25 4 Lo 1021 30 4

02 —= 2 _ % L .3

(vi1) 5 T3 4 Ty (viii) 2°5°8°71

) 15055 1g 2% () 11447, V243, 3 +43
1.2° 237 3445 ’ ’ ’ >

Find the nth term of the sequence %, —%, %, —% ... and hence obtain the 9th term.

Determine the following sequences :

| 10 | 100
@) { } (i) Bn-1}1, (iii) {n(n+2)}2, (iv) {3,“} ;

}’l2 +2]) 0

ANSWER
. .. .n 2 5811
@ 0,2,0,20 Gi) 1,-1,1,-1, 1 (i) 5:3.5¢:2
. 4 16 . 5 17 13
(IV) 1> 13?3 23 ?5 (V) 5, 7, 11, 19, 35 (Vl) 19 I,Z, ﬁa 7
.. 1 1 1 1 .o 11 1 11
(Vll) 1,§a ga@aa (Vlll) 1—!’?!’—5’?!’5
. 1 2 3 . 2345 1 1 1 . I 2 31 4!
(1) 0’§’§’Z (ll) gazagag (111) lagagaﬁ (IV) E’?’Z’g
. 3 11 25 .

O 261220 () L3 0 —L1I-VEVIVENE VA (i)
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. . 2n-1 o 1+ (=) 2n-1
L0 2o ) Gi) S @) S @ B
Vi) S G CDT i) 35 @) o ) JaeTeva
(_1)n+1 L
4. n+1 10
L1 1 1 1 .
5- (1) Ea Ea ﬁa"'am (11) 2, 5, 8, ooy 44
; ST U U N
(i) 3,8, 15, ..., 2600 ) b33 375

2.3 Arithmetic Progression (A.P.)

Let us consider the sequence 1, 3, 5, 7, .............
We observe that
a=1
a=3=1+2=a+2
a=5=3+2=a+2
a=T7=5+2=a+?2

Thus, we see that the first term is 1 and each of the other terms is obtained by
adding a constant number (viz. 2) to the term preceding it.

We also observe that a,—a,=a,—a,=a,-a=............. This means that the difference
of any two consecutive terms, taken in the same order is constant. Such a sequence is
called an arithmetic progression.

Definition : A sequence {a } is called an arithmetic progression (A.P.) if there exists
a number d such that a,,, —a, =d Vn e N. The number d is called the common difference
(C.D.) of the A.P.

An A.P. is completely determined, if we know the first term and the common
difference. In fact, if a is the first term and d is the common difference of an A.P., then
the A.P. is a, a+d, a+2d, a+3d, ...............

The following are examples of A.P. :
@ 1,4,7,10, 13, ...ccc..c. ; C.D. =
@ 2,-1, -4, -7, -10, ....... ; CD.=-3
(iii) —10, -6, -2, 2, 6, .......... ; C.D.=4
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2.4 The n™ Term of an A.P.
Let a be the first term and d be the common difference of an A.P. Then the A.P.
is a, at+d, a+2d, a+3d, ...
Denoting the successive terms by «a,, a,, a,, a,, ..., we have
a=a=a+(1-1)d
a,=atd=a+(2-1)d
a,=at2d=a+(3-1)d
a,=a+3d=a+(4-1)d
Following the pattern, we have
a,=a+(n-1)d

Thus, for an A.P. whose first term is @ and common difference is d, the nth term
(or the general term) @ is given by

a,=a+(n-1d.

Example 4. If the nth term of a sequence be 2n—3, show that the sequence is an A.P.
Hence find its first term and the common difference.

Solution : If a denote the nth term of the given sequence, we have

a =2n-3
- a,, =2n+1)-3=2n-1
Now, Ay, —a,=2n-1)-2n-3)

= 2, a constant.
Thus, we see that, a,,, —a, =2VneN.
Hence the given sequence i.e. {23} is an A.P. with common difference 2.
Also, the first term of the A.P.=a =2.1-3=-1.

Example 5. 1f the first term of an A.P. is 2 and common difference is 3, find its 10th
term and 15th term.

Solution :  Here, first term, a=2
and common difference, d=3
10th term = a;y =a+(10-1)d
= 24+9x3=29
and 15th term = a5 =a+(15-1)d
= 2+14x3=44.
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Example 6. Find the 20th term of the A.P. 3, 7, 11, 15, .................
Solution :  Here, first term, a=a =3
and common difference, d =a, —a,=7-3=4
ayy =a+(20-1)d
= 3+19x4
= 179.
Example 7. Examine if 70 is a term of the A.P. 5, §, 11, 14, 17, ............
Solution :  For the given A.P., we have
first term, a=5

and common difference, d=8-5=3

If 70 be the nth term of the A.P., then

70=a+(n-1)d
= 70=5+(n—1)x3
= 70=3n+2
= 3n=68
_08 _ 52
= n= 3 —223

But this is absurd, in as much as the natural number » cannot be fractional.
Hence, 70 is not a term of the given A.P.
Example 8. Which term of the AP. -3, 1, 5,9, .............. is 65 ?
Solution :  For the given A.P., we have
a=-3 and d=1-(-3)=4
Let 65 be the nth term of the A.P.
Then  65=a+(n-1)d

= 65=—3+(n—1)x4
= 4dn=72
= n=18

Hence, 65 is the 18th term of the given A.P.
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Example 9. The 12th and 15th terms of an A.P. are 68 and 86 respectively. Find its
18th term.

Solution : Let a be the first term and d be the common difference of the A.P.

Then by question, we have

a,=68
= at+11d=68 ... (1)
and a =86
= a+14d=86 .............. (2)

Solving (1) and (2), we get
a=2 and d=6
a ;~a+17d=2+17x6=104.

Example 10. The pth and gth term of an A.P. are respectively ¢ and p. Prove that the
(p+q)™ term is 0.

Solution : Let a be the first term and d be the common difference of the A.P.

By question, we have

a,=q
= at(p-1)d=q ............ (1)
and a,;=p
= at(qg-1)d=p ... (2)
Subtracting (2) from (1), we get
(p—q)d=q-p
_ d= % =-1

Then from (1), we have
a+(p-1)x(-1)=g
= a=p+q-1
. (ptg)" term=a  =a+(p+tq-1)d
=(ptq-D+(ptq-Dx(-1)
=0.
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1 1
b+c’b+c’a+b

Example 11. If 42 p? ¢* are in A.P., show that are also in A.P.

Solution :  Since 42 p? 2 are in A.P., we have

1 1 1

bic'cta ath will be in A.P.

Now,

11 11

if c+a b+c a+b c+a
. . b—a c¢-b
L& if b+c a+b
ie. i (b—a) (b+a) = (c-b) (ctb)
ie. if  b*~a® =c*>-b?, which is true by (i)
Hence I I I are in A.P.

b+c’c+a’a+b

Example 12. If the pth, gth and rth terms of an A.P. are respectively x, y and z,
prove that

(g—r)x+(r—-py+(p-q)z=0.
Solution : Let a be the first term and d be the common difference of the A.P.

Then by question, we have

x=a+(p-Dd .u...... (1)
v=a+(g-1)d ... 2)
z=a+(r—=Dd .o 3)

Multiplying (1), (2), (3) by (g—r), (r—p), (p—q) respectively and adding,
we get

(g-rx+(r-py+(p—-q)z
=(g—nla+(p-Dd]+(r—p)la+(g-Dd]+(p—g)la+(r—-1)d]
=[(g—-r+(-p)+(p—la+lg-—r(p-D+F-p)g-D+(p-g@)r—Di

=0xa+0xd=0.
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2.5 Arithmetic Mean

When three quantities are in A.P., the middle one is called the arithmetic mean (A.M.)
between the other two. Thus, if @, x, b are in A.P., then x is the A.M. between a and
b, and we have

x—a=b—x
= 2x=a+b

= x=%(a+b)
Hence A.M. between a and b is % (a+b).

Again, if a,x;,x,.ccn. ,x,,b be in AP, then x;,x),......... x,, are called the n

sV

arithmetic means between a and b.
To insert a given number of arithmetic means between two given quantities :

Let a and b be two given quantities, and let #» be the number of arithmetic means
to be inserted between a and b.

Thus we have altogether (n+2) terms of an A.P. of which the first term is @ and
the (n+2)" term (i.e. the last term) is b.

If d be the common difference, then
b=a+{(n+2)-1}d
= b—a=(n+1)d

_b-a
= d= n+l
Hence the n arithmetic means between a and b are a+d,a+2d,a+3d, ....... a+nd
ie. a+b_a,a+2(b_a), ......... ,a+m.
n+1 n+1 n+1

Example 13. Insert 4 arithmetic means between 2 and 32.

Solution :  Let x, x,, x,, x, be the 4 arithmetic means between 2 and 32. Then 2,
X, X, X5, X, 32 are in A.P.

Here, 2 is the first term and 32 is the 6th term.

If d be the common difference, then
32=2+(6-1)d

= 30=5d

= d=6
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X =24+d=2+6=8
X, =2+2d=2+2x6=14
X3=243d =2+3%x6=20
and  x;, =2+4d=2+4x6=26
Hence the required means are 8, 14, 20 and 26.

2.6 Sum of First nTerms of an A.P.

Let a be the first term and d be the common difference of an A.P.
If / be the nth term of the A.P., then
l=a+(n—1)d ........... (1)

Let S be the sum of the first n terms of the A.P.

Then, S=a+(a+d)+(a+2d)+..+] .cccecee. (2)

On writing the terms in the reverse order, we have
S=l+(-d)+(-2d)+..4a .ueeen.e. 3)

Adding the corresponding terms in (2) and (3), we get
2S=(a+D+(@a+D+(a+D)+...+(a+])

=n(a+l), since there are n terms

S=2@+]) v )

=5la+a+(n-Dd]  [using (1)]

_n _
= 2[?_aJr(n d]

(4) or (5) may be used as the standard result for the sum of first n» terms of an
A.P.

Example 14. Find the sum of the first 30 terms of the A.P. 1, 4, 7, 10, ....... .
Solution :  Here, a=1, d=4-1=3, n=30

Reqd. sum = %[20 +(n—1)d]

=%[2x1+(30—1)x3]

=152 + 87)
=15 x 89 = 1335.
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Example 15. Find the sum of the following series :
24+22+20+ ... +6

Solution :  The terms of the given series are in A.P. of which, first term, a=24 and
common difference, d =22 —24 =-2.

Let n be the number of terms in the series.

Then, a, =6
a+(n-1)d=6
24+(n-1)(-2)=6
18=2(n-1)
n—1=9

u v 4 U U

n=10
Reqd. sum =§(a +1)

~Doare) [ 1=a=6]
= 5x30
=150.

Example 16. How many terms of the A.P. 24, 20, 16, 12, .......... must be taken so
that the sum may be 72. Explain the double answer.

Solution :  Here, a=24 and d=20-24=4.
Let n terms of the A.P. give a sum 72.

%[Za +(n=-1)d]=72
n

2[2><24+(n—1)><(—4)]=72
2n(12—n+1)="72
n(13—n)=36

n? —13n+36=0
(n-4)(n-9)=0
n=4,9

A A
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Both these value of n satisfy the conditions of the question, for, if we write
down the first 9 terms, we get 24, 20, 16, 12, 8, 4, 0, -4, -8. It is
seen that the sum of the last five consecutive terms is zero. Hence, the
sum of the first 9 terms is the same as the sum of the first 4 terms of the
A.P.

Example 17. The 5th and 12th terms of an A.P. are 14 and 35 respectively. Find the

Solution :

Example 18.

Solution :

sum of the first 20 terms of the A.P.
Let a be the first term and d be the common difference of the A.P. Then,
a=14
= a+4d =14 . (1)
and a,=35
= a+ 11d=35 ............... (2)
Solving (1) and (2), we get
a=2 and d= 3

Reqd. sum = %[20 +(n—1)d]

=%[2x2+(20—1)x3]

=10x61=610.
If x, y, z are respectively the sum of the first p, ¢, » terms of an A.P.,

Xg-n+Zr-p+Z(p-q)=
prove that p(q F)+q(r p)+2(p-q)=0.

Let a be the first term and d be the common difference of the A.P. Then,

x=802a+(p-Ddl= 5 =3 Da+(p=Dd] ... (1)
y=§[2a+<q—1)d]:§=§[2a+<q—1)d] ................... 2)
z=212a+(r-Dd]=Z=12a+(=Dd] ..o @)

Multiplying (1), (2), (3) by (¢g—r), (—p), (p—q) respectively and adding,
we get

SN+ =p+E(p-q)
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= 2120+ (p=1d)(g - )+ 312a+ (g~ D1~ p)

+5[2a+(r=Ddl(p-9q)

N[ —

=al(g-r)+ (= p)+ (p-@+L(p-Dig-7)
+(g=)(r=p)+(r=D(p-q)]
=a><0+%><0

EXERCISE 2.2

Find the 15th and 50th terms of the A.P. 1, 3,5, 7, cvvevvviveeennen. .
Find the 21st term of the A.P. 7,4, 1, -2, -5, 8, cvevvveveereennen. .

(1) Which term of the A.P. 1,4, 7, 10, ..ccoocveevernneee. 1s 55 7?
(i) Which term of the AP 3.5, 2.5, ......... is 97
Is 216 a term of the A.P. 3, 8, 13, 18, .cccvvvevrreennns ? If not, find the term nearest

to it.

The first term and the common difference of an A.P. are respectively 39 and
—7. Find the 10th term.

The first term and 12th term of an A.P. are respectively 5 and 49. Find the common
difference.

How many numbers divisible by 15 are there between 20 and 400 ?

If the nth term of a sequence is 3n + 4, show that the sequence is an A.P. Hence
find the first term and the common difference.

Find the 25th term and the common difference of the A.P. whose nth term is 4n+1.
The 8th and 15th terms of an A.P. are 4 and —24 respectively. Find its 12th term.
The 13th and 22nd terms of an A.P. are respectively 6 and 9 ; which term is 8 ?
The pth and gth terms of an A.P. are respectively ¢ and p. Find the nth term.
A sequence {a,} is given by

a, = n* -1neN.

Show that it is not an A.P.
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If a, b, ¢ are in A.P., show that
(1) b+c,c+a,a+b are also in A.P.

() a’(b+c), b (c+a), 2 (a+b) are also in AP.
1 1 1 .
(ii1) be ca’ ab € also in A.P.
If x, y, z be respectively pth, gth, rth terms of an A.P., show that

p(y—=2z)+q(z=x)+r(x—y)=0.

1 1 1
If 3 cva a+pb arein AP, show that 42 p?, ¢* are also in A.P.

If the nth term of 3, 5, 7, 9, ........... is the same as that of 9, 10%, 12, 13%, ............ ,

find n.

The sum of three numbers in A.P. is 21 and the sum of their squares is 179. Find the
numbers.

The sum of three numbers in A.P. is 24 and the product of the two extremes is 55.
Find the numbers.

The sum of four numbers in A.P. is 48 and the product of the two extremes is 108.
Find the numbers.

Find the arithmetic mean between
(1) 10 and 20 (i) —5and 5 (ii1)) -5 and 9.
Insert (1) 2 arithmetic means between 2 and 11.
() 3 arithmetic means between 6 and 22.
(i) 4 arithmetic means between 5 and 20.
(iv)  n arithmetic means between 1 and »°.
(v) 3 arithmetic means between 2n +1 and 2n—1.

There are n arithmetic means between 4 and 64. If the ratio of the fourth mean to
the eighth is 7:13, find n.

If g+b+c#0 and bzc’cza’a-ci-b are in A.P., prove that

Q|
S| =

,% are also in A.P.

b

Find the sum of the first
(1) 20 terms of the A.P. 1, 5,9, 13, ..ccecvennne.
@) 25 terms of the A.P. 9, 12, 15, 18, ..................
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i) 30 terms of the AP, 13,2,21,2.2,

1
3 9
(iv) 40 terms of the A.P. 10, 8, 6, 4, .................

(v) nterms of the A.P. 3n, 3n—1, 3n—2, ..............

. 1 1 1
(vi) n terms of the A.P. T1va =g T Ja’ e

Find the sum of the following series :

@) 58I+ o, +47
([ 447+ 10+ oo, +49
(i) 4+ 8+ 124 o, +80

(V) W2+D+2+ 2 =D.cc.. 4+ (V2 -14)
V) =)+ )+ ) +(x* + )7 +18xy).

(1) How many terms of the A.P. 5,9, 13, 17, ................ must be taken so that
the sum be 1224 ?

(i) How many terms of the A.P. 3, 8, 13, 18, .............. must be taken so that the
sum may be 1010 ?

How many terms of the A.P. 22, 18, 14, 10 ................ must be taken so that the
sum may be 64. Explain the double answer.

The 5th and 11th terms of an A.P. are 41 and 20 respectively. Find the sum of the
first 12 terms.

The 12th term of an A.P. is —13 and the sum of the first four terms is 24. Find the
sum of the first 10 terms.

The first term of an A.P. is 7 and the sum of the first 15 terms is 420. Find the
common difference of the A.P.

The sum of the first 15 terms and that of the first 22 terms of an A.P. are 495 and
1034 respectively. Find the sum of the first 18 terms.

The sum of the first 21 terms of an A.P. is 28 and that of the first 28 terms is 21.
Show that one term of the A.P. is zero, and find the sum of the preceding terms.

The sum of the first 10 terms of an A.P. is 30 and the sum of the next 10 terms
is —170. Find the sum of the next 10 terms following these.

Find the sum of the integers between 21 and 99 divisible by 6.
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Find the A.P. when the sum to nterms is (i)n? (ii) 2n*+5n.

If the first term of an A.P. be 4, its common difference be 2a and the sum of the first
n terms be S, prove that 7 = \/g.

The sum of the first » terms & that of the first m terms of an A.P. are m and n
respectively. Show that the sum of the first (m+n) terms is —(m+n).

If the sum of m terms of an A.P. be equal to the sum of n terms, prove that the sum
of (m+n) terms is zero.

1 1
If the pth term of an A.P. is i and the gth term is — > prove that the sum of the
first pq terms is %(PQWL ).
ANSWER

29,99 2. 53 3. (i) 19th terms (ii) 10th term4. No, 218

—24 6. 4 7. 25 8. 7,3 9. 101, 4 10. —12
19th term12. p+g—n 17. 13 18.3,7, 11 19.5,8, 11
6, 10, 14, 18 21. ()15 ()0 (iii) 2
)58 (i) 10, 14, 18 i) 8, 11, 14, 17
(iv) n+a, 2n+3, 3n+4, ... 3n*+n+1 (V) 2n+4,2n-1.
® 9
(i) 780 (i) 1125 Gii) 195  (iv) —1160
Sn+1
W) n('; ) (vi) 2(1 [n 3)Ja +2]
@ 390 (i) 424 (iii) 840
(iv) 8(2v2-13) (V) 11(x% + 7 +8xy)
@ 24 (i) 20
4 and 8 29. 429 30. 0 31. 3 32. 702

28% 34. 370 35. 780 36. (i) 1,3, 5, .. (i) 7, 11, 15, v
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2.7 Geometric Progression (G.P)

Let us consider the sequence 2, 6, 18, 54, .......... .
We observe that

a=2

1
a,= 6=3x2 =3a1
a,= 18 = 3><6=3a2

az= 54 = 3x18 =3a3

Thus, we see that the first term is 2 and each of the other terms is obtained by
multiplying the term preceding it by a fixed number (viz. 3).

a, ay a,

“2 _ "3 _ M4 . .
We also observe that 4 a, ay T 1.e. the ratio of any term (except the

first) to the term preceding it is the same. Such a sequence is called a geometric
progression.

Definition : A sequence {a } is called a geometric progression (G.P) if there exists

Ap+l

a non-zero number 7 such that =rvneN  The number r is called the common ratio

n

(C.R.) of the GP.

A GP. is completely determined, if we know the first term and the common ratio.
In fact, if a is the first term and » is the common ratio of a G.P., then the GP. is a, ar,

ar’, ar’, ...

The following are examples of GP. :

A 1,2, 48 . CR. =2

.. 1 1
(11) 1’3’ 32 s 3_3’ ............... 5 C.R=

@) 3, -6, 12, 24, 48, ........ : CR=-2.
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2.8 The n™ Term of a G.P.

Let a be the first term and » be the common ratio of a GP. Then the GP. is a,
ar, ar’, ar’, ............ Denoting the successive terms by a, a,, a,, @, .............. , We
have

a=a=ar'"!

a,=ar=ar"'

a,=ar’=ar "'

a,=ar’ =art"!

Following the pattern, we have

a =ar" '

n

Thus, for a GP. whose first term is ¢ and common ratio is 7, the n™ term (or the
general term) a is given by

n

Example 19. Find the specified term of the following GP. :
(i) 10™ term of 1, 2, 4, 8, ............
(i) 9 term of 2, -1, L, _1 ...
2 4
. . a 2
Solution : (i) Here, a =a=1 and r= w1 2.
1
10" term = a =ar'"!
= 1x2°=1512

(ii)) Here, a=2 and r= _71

N
Lag=ar’ = 2X(—§)

1 1

= 2)(_ = —_—

256 128

Example 20. The 6™ and 11™ terms of a G.P. are 96 and 3072 respectively. Find
the 15" term of the G.P.

Solution : Let a be the first term and r be the common ratio. Then
a,= 96

= ar®1=96
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and a, = 3072

= ar''-1=3072

= ar'®=3072 e ()
Dividing (2) and (1), we get

53072
96

= =32
= =2
= r=2

Then from (1), we have

ax2°=96
= 32a=96
= a=3
a,=ar® '=3x2"4=49152

Example 21. Three numbers, whose sum is 15, are in A.P.; when 1, 4, 19 are added
to them respectively, the results are in GP. Find the numbers.

Solution : Let the three numbers in A.P. be a—d, a, a +d.
Then (a—d)y+a+(a+d)y=15
= 3a=15
= a=35

Also it is given that a—d + 1, a+4, a+d+ 19 are in G.P.
1Le. 6—d, 9, 24 + d (taking a =5) are in GP.

9 _24+d

6-d_ 9
= 81=(6-d) (24 +d)

= 81=144—18d—d>
= d2+18d-63=0

= (d-3)d+21)=0
- d=3, -21




Example 22.

Solution :

Example 23.

Solution :
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Taking d = 3, three numbers are 5—-3, 5, 5+3 i.e. 2, 5, 8.

Again, taking d =-21, the numbers are 5—(-—21), 5, 5+ (-21)
ie. 26, 5, —16.

Hence the three numbers are either 2, 5, 8 or 26, 5, — 16.

Divide 26 into three parts which are in G.P., such that their product
is 216.

Let the three parts (which are in GP.) be %, a, ar. Then

agar=216
7

= a*=6°
= a=6

Also, %+a+ar=26
= Si6+6r=26
= 846r=20
= 243r=10
= 33 19
= 3+32=10r
= 32-10r+3=0
= r-3)@3r-1)=0

r:3,%

Hence the three parts are g, 6, 6X3 i.e. 2, 6, 18.

(Observe that when we take »= -, we get the same set of numbers

18, 6, 2.)
If a, b, ¢, d are in GP., Prove that a*> + b, b*+ ¢, ¢+ d? are in GP.

59

Let » be the common ratio of the GP. Then

b ¢ _d
a b c
b=ar, c=br=ar’, d=cr=ar.

b2+c2 _(ar)>+(ar?)® _a’r:(l+r?) _ ,
a?+b2  a’+(ar)?  a*(l+r?)

Now,
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c2+d? _(ar?)?+(ar’)? _a?ri(l+r2)

and b2+c?  (ar)®+(ar?)?  a?r2(1+r2)

Hence, a*> + b*, b> + ¢?, ¢>* +d ?* are in GP.

Example 24. 1f x, y, z be respectively the p® ¢" r" terms of a GP., prove that
x4 yrp zPra=1,

Solution : Let a be the first term and & be the common ratio of the GP. Then
x=ak?~ ', y=akr~', z=ak""
X477 yrrz P4 = (ak p-l ) o .(ak q-1 ) P .(ak =l )p -
= qq7k (D=1 gr-rk (D) 0-p) ¢ r—qf (r=1)(p=q)
= q @)+=p)+(p-9) | (p-D(g=-)+(qg=D(r-p)+(r-)(p-q)
= ak?®
= 1
2.9 Geometric Mean (G.M.)

When three quantities are in G.P., the middle one is called the geometric mean
(GM.) between the other two. Thus, if a, x, b are in G.P., then x is the geometric
mean between a and b, and we have

x_b
a x
= x*=ab
= x=4/ab.
Again, if a, x, Xppeeeireieinnen, X, b, are in GP, then x, x,,........ ,x are called

the n geometric means between a and b.
To insert a given number of geometric means between two given quantities :

Let a and b be two given quantities, and let n be the number of geometric means
to be inserted between a and b.

Then we have altogether (n + 2) terms of a GP. of which the first term is a and
the last term i.e. the (n +2)* term is b.

If » be the common ratio, then
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b= ar (n+2)-1
n+l :2
= r a

- (3"
a

Hence the n geometric means between a and b are ar, ar?, ar’, ........

1 2 3 n
(b)nﬂ (b)iﬁ—l (b)rﬁ—l (b)nﬂ
a| — , al = , al = pereeeneeaneeanns ,al = .
a a a a

Example 25. Insert 3 geometric means between 4 and 64.

Solution : Let x, x,, x, be the 3 geometric means between 4 and 64.

X, X,, X;, 64 are in GP.
Here, 4 is the first term and 64 is the 5% term.

If » be the common ratio, then

64 =41
= r*=16
= =24
=>r=2

x, =4r=4x2=38
x,= 4rr=4x2>=16
and x, =41} =4x2°=32
Hence the required means are 8, 16 and 32.
2.10 Sum of First n Terms of a G.P.
Let a be the first term and » be the common ratio of a G.P.
Then the n™ term of the GP. is ar”" .
Let S denote the sum of the first n terms of the G.P.
Then,
S=a+tartar+......... +arm!
and Sr=ar+arr+ ... +ar" '+ar"

By subtraction, S—-Sr=a—ar”

39

Then 4,
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= S(I-rN=a(l-r"
_a(ld=r") _a(@"-1)

= S r#1
1-r7 r—1 ( )
If r> 1, we write S:—a(r” Il);
’/’_
and if » <1, we write S=M.
—r
Note : The above formula fails when » =1. However, in this case
S=at+a+ta+............ to n terms = na.

Example 26. Find the sum of the first 10 terms of the GP. 1, 3, 9, 27, ........

Solution : Here, a =1, r:%:?), n=10.

a(r=1) 13'9-1)

Reqd. sum = 1 3.1
2 2
Example 27. 1If a, b, ¢ are in A.P. and x, y, z are in G.P., prove that x ®~<, yc-¢
zab=1.
Solution : Since a, b, ¢ are in A.P., therefore
b—a=c-b

= a-b=b-c
= a+c=2b

Again, since x, y, z are in GP., therefore

Y_z
X oy
= xz =)?
Then, x?-¢. yc-a, za-b =xa-b ye-a ga-b  [-+ h—c=qa-b]

— (xz)a—b‘yc—a
=(y2)a—b.yc—a [... xz:yZ]
— y2a—2b .yc—a
:y2a—2b+c—a
=ya+c—2b

=y®-2® [ a+c=2b]
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Example 28. How many terms of the GP. 2, 3, 4%, ............ must be taken to give
a sum equal to 26% ?
Solution : Here, a=2 and r :%.

Let n terms of the GP. give a sum 26%.

a(r"=1) 5.3
r—1 _268
A6
_ 211
= 3 =
2
3Y' | 21
N éj"_lzﬁ
2 32
3 211
= (5) =3t
N i)" 243
2 32
n 5
3V _(3
- (2) ‘(2)
= n=>5

Hence the required number of terms is 5.

Example 29. 1f S be the sum, P, the product and R, the sum of the reciprocals of

n terms of a G.P., prove that P? = (%)n
Solution : Let a be the first term and » be the common ratio of the G.P. Then
S=a+ar+ar’+ar’ +............. +ar'! = —a(:n_; D
P=a.ar.ar’.ar’............. ar™!

= anrl+2+3+ ........... +n(n-1)

n(n—1)

— a'r 2 {.-1+2+3+ ....... +(n—1)=nz_1{2-1+(”_2)‘1}:n(nz_1)}
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and R = l+L+L+ .................. + 171
ar”

()
a\ r”" rm—1

r—1 ar'(r—1)
r

n(n—1) 2
Now, P? = |a"r 2

_ a2nrn(n—1)

d sY' a(r”—l)xar”‘l(r—l) "
adl g ) = r—1 rt—1

((127’ n— l)

— aann (n—-1)
S n
Hence, P2 =| =2
®)

EXERCISE 2.3
1. Find the specified term of the following GP. :

' th 111
(1 14™ term of8, 17

() 7% term of 81, =27, 9, —3,eerveeerreererreeerr

Lo

(i) 10% term of %, \/E, 2\/5, ..............................

(iv) 8™ term of P2 PG, G*eeeeeeeieieeeeeeeeee,

2. Find the value of £ so that the following may be in GP.:
0 k+1, 2k+2, Sk-2 @ 3k+1, 6k—4, 3k—2
@) k-1, 3k—3, 8k—-2

3. The fourth and seventh terms of a G.P. are 54 and 1458 respectively. Find the
10™ term.



10.

I1.

12.
13.

14.

15.

16.
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@) Which term of the GP. 9, 3, 1, wooeeovrrrrrrr. is ﬁ?
(i) Which term of the GP. 32, — 16, 8, —4, wovoo.. is % ?

If the sum of three numbers in G.P. is 104 and their product is 13824, find the
numbers.

Divide 42 into three parts which are in G.P. such that their product is 512.

Divide 31 into three parts which are in G.P. such that the sum of their squares
is 651.

Three numbers whose sum is 18, are in A.P.. When 2, 4, 11 are added to them
respectively, the resulting numbers are in GP.. Find the numbers.

The product of three numbers in G.P. is 729 and the sum of their products in
pairs is 819. Find the numbers.

If a, b, ¢, are in GP., show that (i) a*>+ b? ab+ bc, b*>+ ¢? are in G.P.

.. 1 1 1 .
(11) 5 3 Brc are in A.P.

If a, b, ¢, d are in GP., prove that

(i) a+b, b+c, c+darein GP.

(i) a*>-b% b*—c?, *—d? are in GP.
@) (a—b)*, (b—c)* (c—d)* are in GP.

. 1 1 1 .
v , 5 are in GP.
) a’?+b? b2+c? c?+d?

If p, g™, M terms of a G.P. are also in G.P., show that p, ¢, r are in A.P.

If a, b, ¢, d are in GP., show that

i) (btre)yb+d)y=(cta)(ctd

i) (@+b*+cH)(b*+c*+d?) = (ab + bc +cd)
(i) (b—c)P+(c—a)*+(d->b)*=(a—d)y

If 1, 1, 3, 9 be added respectively to the four terms of an A.P., a G.P.
results. Find the four terms of the A.P..

If a, b, ¢ be the p® g%, r terms both of an A.P. and of a G.P., show that
ab—c bc—a ca—bzl.

1
z

1 1
If a, b, ¢ are in GP. and g~ =p” =¢Z, show that x, y, z are in A.P.
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17.

18.

19.

20.

21.

22.
23.

24.
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Find the geometric mean between

(i) 3and 27 (i) 2 and g7 (i) %and 125

Insert (i) 2 geometric means between 2 and %

(i) 2 geometric means between —% and %

(ii1) 3 geometric means between 3 and 48.
(iv) 3 geometric means between — 2 and —% .

(v) 5 geometric means between 8 and %
(vi) 3 geometric means between a and %.

The arithmetic mean between two numbers is 15 and their geometric mean
is 9. Find the numbers.

If a be the arithmetic mean between b and ¢, and p, g be the geometric means
between them, show that p* + ¢* = 2abc.

If a, b, ¢c be in GP. and x, y be the arithmetic means between a, b and b, ¢
respectively, show that
(1) l+l=2 (ii) a,¢c_»H.
x y b Xy
Prove that the product of n geometric means between a and b is (ab)%-
Find the sum of the first

(1) 10 terms of the GP. 1, 2, 4, §, .................

ot 1 1 1
@) 8 terms of the GP. 1> 39’ 37

@i) 12 terms of the GP. 8,4, 2, 1, .cccovvvererennenns

@iv) 7 terms of the GP. 1, —3, 9, — 27, ..ccccvveunenn.

(v) 9 terms of the GP. 1, _l, l, _l, ....................

2 4 8

(vi) n terms of the GP. 1> 11 1

5725 125
(vii) n terms of the GP. 3, —6, 12, =24, ....................

(i) How many terms of the GP. 1, 3, 9, 27, ............. must be taken so that
their sum is equal to 3280 ?




25.
26.

27.

28.

29.

30.

31.

19.

23.
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(i) How many terms of the GP. ll, 2,3, must be taken so that
their sum is equal to % ?
Find the least value of n, for which 1 +3 +3%+ ................. + 37> 1000.

The 5" term of a G.P. is 48 and the 12" term is 6144. Find the sum of the
first 10 terms.

In a GP., the first term is 5, the last term is 320 and the sum is 635. Find
the 4" term.

The sum of the first 6 terms of a GP. is 9 times the sum of the first 3 terms.
If the 7" term be 384, find the sum of the first 10 terms.

The sum of the first 10 terms of a G.P. is 33 times the sum of the first 5 terms.
Find the common ratio.

The first and the last terms of a G.P. are respectively 3 and 768 and the sum
is 1533. Find the number of terms and the common ratio.

If S, S,, S, be the sums of the first n terms, 2n terms, 3n terms respectively
of a GP., prove that

@  S”+S,7=S,(S,+S;)
@)  S;(S;-8,)=(5+8S,)?
ANSWER

7
(i) 1024 (i) é (iii) 52642  (iv) %
()6 ()1 (i) 7
39366 4. (i) 8" term (i) 11" term
8, 24, 72 6. 2,8, 32 7. 1,5, 25

3,6,9o0r 18, 6, -6 9. 1,9, 81 14. 1,3, 5, 7
()9 (i) 4 (i) 5

G) 1, % i) L-2 i) 6, 12,24 Gv) -1, —L, _ Lo, 1 1

273 2 4 2 4
v) 4,2,1, L1 vi) Ja. 1,
) > 7 (vi) Va T
3, 27
. .. 3280 ... 4095 . 171, . 5(,_ 1
(1) 1023 (i) 2187 (ii1) 2048 (iv) 547 (v) 256 (vi) 4(1 )
(vi)) 1—-(2)y
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24. (i) 8 (i) 5 25. 6 26. 26.3069
27. 40 28. 6138 29. 2
30. 8 and 2

2.11 Harmonic Progression (H.P.)

Let us consider the sequence . We observe that in

this sequence, the reciprocals of the terms form the sequence 2, 5, 8, 11, ........... , which
is an A.P. Such a sequence is called a harmonic progression. Thus, the reciprocals of
the terms of a harmonic progression form an A.P.

Definition : A sequence {a } is called a harmonic progression (H.P.) if the

sequence d such that

[
Obviously, the terms of an H.P. may be determined in a manner similar to that of

an A.P. As every H.P corresponds to an A.P, problems relating to H.P are solved with
reference to the corresponding A.P.

The following are examples of H.P. :

) (T 1,2,3,4, ... are in A.P.)

(i) 1 4,1,-2,-5, ... are in A.P.)

(iit) (la atd a+2d a+3d, ...
are in A.P.)

2.12 Harmonic Mean (H.M.)

When three quantities are in H.P., the middle one is called the harmonic mean
(H.M.) between the other two. Thus, if H be the harmonic mean between a and b,

then a, H, b are in H.P. and consequently are in A.P.

= | \

- I
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N 2 _a+b
H ab
-~ H= 2ab
a+b 2ab
Hence, the harmonic mean between a and b is i b

2.13 Relation Between A.M., GM. and H.M. of Two Unequal
Quantities

To show that (i) A.M., GM. and H.M. are in GP.
(i) AM.>GM.>HM.

Let A, G and H be respectively the arithmetic mean, geometric mean and harmonic
mean between two unequal positive real numbers a and b.

Then, A = a+b’ G= \/E, H= 2ab

2 a+b’
. _a+b_ 2ab
(i) Now, AxH= > *u+h
= ab
:G2
A G
= A, G H are in GP.
(i) Again, A—G= a;b—«/ab

%(aer—Z\/%)

= %(\/Z ~b )2 >0 [ a and b are positive and unequal]

Combining (1) and (2), we get
A>G>H
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Note. It may be noted that the above inequality reduces to an equality
(i.e. A=G=H) when a =0>.

Example 30. Find the 6™ term of the H.P. 4, 2, %, ...............

Solution : Let a be the first term and d be the common difference of the A.P.
corresponding to the given H.P. Then,

a= % and d = %—%=%
6™ term of the corresponding AP
= a+5d
- osedededd
6™ term of the given H.P. = %

Example 31. Find the 15" term of the H.P. whose 2™ term is 2 and 31° term
is i
31

Solution : Let a be the first term and d be the common difference of the A.P.

corresponding to the given H.P.

Then by question, we have

a+d=% ................................................ (1
_ 31
and a+30d—7 ............................................ 2)
Solving (1) and (2), we get
_1 _1
a—4 and d—4
15" term of the AP. = a+ 14d
_ 1 1_15
= 4+14><4 =
Hence, 15" term of the H.P. = %
a b c

Example 32. 1f a, b, ¢ are in H.P., show that are also in H.P.

9 9
b+c c+a a+b
Solution : a, b, ¢ are in H.P.

= la la l arc in AP
a b c



Remark :

Example 33.

Solution :

Example 34.

Solution :
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a+b+c a+b+c a+b+c
9 b

p b are in A.P.
— 1+0FCc peta Lath gein AP,
a b c
= b+c’ cta, a+bh are in A.P.
a b
a b € _ are in HP.

b+c c+a a+b
In the above example, we have used the following facts :

(1) If each term of an A.P. is multiplied by a non-zero constant, the
resulting sequence is still an A.P..

(i) If a constant is added to each term of an A.P., the resulting
sequence is still an A.P.

Insert three harmonic means between 1 and 1

9
Let x, x,, x, be the three harmonic means between 1 and é Then
L, x,, x,, x,, 1 are in H.P. Therefore 1 L, L, i,9 are in
9 X Xy Xy

A.P. Obviously, 1 is the first term and 9 is the 5" term of the A.P.
If d be the common difference of the A.P., then

9=1+4d
= 4d=28
= d=2
1 1 1
x—1=1+2=3, x, =3+t2=5and ;' =5+2=7.
_ 1 _ 1 _ 1
N=3, %573 andx3—7
Hence the required means are %, % and %

If ¢*=p?=c?=k and a, b, ¢ are in G.P., show that x, ), z are
in H.P.

We have ¢ = p? = ¢7 = k (say)
1 1 1
= a=k*,b=k?, c=k*
Since a, b, ¢ are in G.P., therefore

b_c
a b
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=X, y, z are in H.P.

EXERCISE 2.4
Find the specified term of each of the following H.P. :

G 10" term of 1,%,1,L, .................

() 5% term of 3,1, 3,
4 2

(i) 6" term of 3, 1%, 1y oo

@v) 20" term of 1, 1%, 4y e,

v) n"term of 2, i, 7, i, ..............
\ 11 3 8 1 5%
Find the H.P. whose

@) 1% term is 31 and 4" term is 1L

8 13

.. .1 .1
th — th —
(i) 4™ term is B and 14" term is 1

(i) 7" term is 2 and 17" term is 2

5 25"
Find the 19" term of the H.P. whose 5™ and 10™ terms are _36 and _4

. 151 35
respectively.

Insert(i) two harmonic means between % and %

(i) three harmonic means between 2% and 12

(i) four harmonic means between 1 and 6

(iv) three harmonic means between a and b.
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I1.

12.

13.
14.

15.

16.

17.
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19.
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If the p™ term of an H.P. be ¢ and the ¢" term be p, prove that

: . pq

i (+qg@htermis -
p+q

() n»"term is %

(i) (pg)™ term is 1.

If the p™, ¢™ and r™ terms of an H.P. be a, b, ¢ respectively, show that

(gq—r) bc+(r—p)ca+(p—q)ab=0.

If &2, b*, ¢* are in A.P., prove that b + ¢, ¢ +a, a + b are in H.P.

If a, b, ¢ be in A.P. and p, ¢, r be in H.P., show that ab_-l-czp_ﬂ” )
q pr

If azb, b, b;—c be in H.P., show that a, b, ¢ are in G.P.

If a, b, ¢ are in H.P., show that l+ 1 ,l+ 1 ,l+ 1 are also in H.P.
a b+c b c+a ¢ a+b

Ifa b, cbein AP, b, ¢, din GP. and ¢, d, e in H.P,, prove that q, ¢, e are
m GP.

If a, b, ¢ be in G.P., show that log, x, log, x, log, x are in H.P.
If a, b, ¢ are in A.P. and b, ¢, d are in H.P., prove that ad = bc.

If X, X, X5 e , x are in H.P., show that xx, +xx+.... tx x =
(n—1xx.
If a, b, ¢, d are in H.P,, prove that a +d>b + c.

The GM. and H.M. between two numbers are 9 and % respectively. Find

the numbers.

If AM. and GM. of two positive numbers are 12 and 6 respectively, find
their H.M.

If b+c—a c+a-b a+b-c be in AP.

show that a, b, ¢ are in H.P.
a b c

Which term of the H.P. 1, % 4, o) is _% 9

If A be the A.M. and H be the H.M. between a and b, prove that
a-A b-A_A

a-H b-H H
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ANSWER

L) o ()0 (iii)% (iv) —% )
| 14 .23 |7

35
n+2

2. () 3§, 243, lﬁ’ IB’ .................
(i1) %, %, é, %, .................
(iii) —%, —%,_%, .................
. -
16. 3 and 27 17. 1 19. 25" term.

2.14 Sum of Some Important Finite Series

(1) Sum of the first #» natural numbers.

This being a series in A.P. with first term =1 and »™ term = n, we have

S = %(l+n) [Using the formula S = %(a +1)]

_ n(n+l)
1+2+ 32 Forreecnnnnnnennnteesssnnsnesaens +n= @
(i) Sum of the squares of the first » natural numbers.
Let S=12+22+ 32+ e, + n?
We have, * —(r—1)*=3r-3r+1.
Putting r=1, 2, 3, coeeeeieieie , n successively, we get

1°-0°=3.1"-3.1+1
22-1°=322-32+1
3-23=332-33+1

nw—-m-1P»=3n*-3n+1
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By adding, we get

nw=3(12+22+32+ ... +n)-3(1+2+3+..... +n)+n
= =353
:>3S=n3+w_n

= %{2n2+3(n+1)—2}

= %(an +3n+1)
_ n(n+)(2n+l)
B 2
n(n+1)(2n+1)
" S = 6
L2243 e +tn'= n(n+1)6(2”+1).
(i) Sum of the cubes of the first » natural numbers.
Let S=13+23+33+ . + .

We have, (r+ 1> —(r—1)*=4r
= r(r+ 1) —(r-1)>~r=4r (multiplying both sides by 7?)
Putting r=1, 2, 3, .oecvereeee , n successively, we get
12.22-0%12= 4.1°
22.32-1222=42
32.42-2232=433
nm+172—(m-1yn*=4.n°

By adding, we get

WA 1R =413+ 2+ 3+ + 1) =4S
2 2
= S = %

_|n(n+1) ?
- 2

2
I S S t = {M}
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2.15 The “Y ”Notation

The greek letter 2 (sigma) is often used to denote the sum of a number of similar

simply by > n.

terms. For example, the sum 1+2+3+................ + n may be denoted by rnz_:lr or
Thus, Y 7=1+243 4 oirrrrrnnns + :”(";1)
Sn2=12422432 4 . +n2:n(”+1)6(2”+1)
S 3 =B+2343 4, +n3:{@}2.

Also, it is easy to see that 2.(an+bn*)=aY . n+by ,n*

Example 35. Find the sum to n terms of the following series :

Solution :

(1) 2+4 46+ i,

() 1+3+5+ e,

(i) Here, t =n™ term of the series = 2n
- Reqd. sum = > t,=>2n=2%n

~ 5 n(n+1)

=n(n+1)
(i) Here, t =n" term of the series =2n — 1

- Reqd. sum = 2 ¢, =2 (2n-1)

=2>n-1

_ Ay n(m+l)
= 2. >
=nmn+1)—n

n [+ Y1=1+1+1+...to n terms = n|

:n2

Alternatively,
Reqd. sum = %[2.1+(n—1).2] [ the given series being in A.P.
with first term 1 and C.D. 2]
= %(2+2n—2)

:nz
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Example 36. Sum the series 1.2.3+2.3.4+345+ .......... to n terms.
Solution : Clearly, the n™ term of the series is n (n + 1) (n + 2).
. The reqd. sum = > n(n+1)(n+2)
= Y nm>+3n+2)
= > (n3+3n%+2n)
= >n*+3> n2+2>n

{n (n2+1)}2 - n(n+1)6(2n+1) +2.3(n2+ )
n*(n+1)? n(n+1)(2n+1)

= 1 + > +n(n+1)

- n(nT_'_l)[n(n+l)+2(2n+l)+4)

= n(nT—l-l).(nz +5n+6)

_ %n(n+1)(n+2)(ﬂ+3)

Example 37. Sum the series 1 + (1+2) + (14+2+3) + ..o, to n terms.

Solution : Here, n" term=1+2+3+ ............... tn="5—

n(n+l)
2

= 2T+
= 3[Zn 4zl
_ l[n(n+l)(2n+l)+n(n+l)}

- Reqd. sum = )

2 6 2

_ n(n+l)
2 (2n+1+3)

- (’1’; D 2tn+2)

- %n(n+l)(n+2)
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EXERCISE 2.5

Find the sum of the following series to n terms :
1+4+ 7+ 104 e

PP4+324+ 5+ e,
1.2+23+34+ e
13+35+57+ i
12242324347+ e,
1324242 +3.5% 4 e
1.2243.524+5.8%F e
1+(1+3)+(1+3+5)+ ...

9. P+3+534 e

10. 1.1+234354 e

1. 1.3+254+3. 7+,

12. 1.24+237+3410+ .o

1+2  1+2+3
13. 1+—§—+ 3 +
14, 24+4.6+6.8+ oeeeeeeeeeeeeeeaaaannnnn.,

15. 1.35+357+579+ i
16. 1.47+258+3.69+ i
17. 1.59+2.6.10+ 37111 + oo
18. 1.24.+235+34.6+ oo
19. 134+245+35.6+ i

20. 1354246 +35.7+ i

2 2 2 2 2
21. 12+1 ;2 +1 +23+3 e

22, PPH(12+2)+ (12 +2243) 4 oo,
P o13+23 13423433

23. [t 102 T 15243 T
12 12422 12422432

24. sty 1 F o

25. 24 (2+5)F (254 8) F oo

e A e




I1.

13.

16.

18.

20.

22.

25.

1
ke (3n-1)

%n (4n? +6n-1)

%n(n+l) (Gn?+191+32)

%n(n+l)(2n+1)
%n(n+1)(4n+5)

1

4n(n+3)

%n(n+1)(n+6)(n+7)

%n(n+l)(n+2)(3n+13)

L (1) (n+ 4)(n+5)
én(n+l)2(n+2)

%n (n+1)2
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2.

5.

9.

12.

14.

23.

ANSWER
%n(4n2—1) 3. %n(n+1)(n+2)
%n(n+l)(n+2)(3n+5)

7. %n(9n3+4n2—4n+1)
n*(2n — 1) 10. %n(n+1)(4n—l)
%n(n+l)(9n2+25n+4)

%n(n+l)(n+2) 15. n(2n + 8n2+ Tn - 2)

7. %n(n+1)(n+8)(n+9)

—_—

9, %n(n+l)(3n2+23n+46)
1 2
21. 36n(4n +15n+17)

%n(n+l)(n+2) 24, %n(n+l)(4n+5)
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CHAPTER 3
MATHEMATICAL INDUCTION

3.1 Introduction

The word ‘induction’ means inferring a general statement from the validity of
particular cases. Mathematical induction is a method which is frequently used to establish
the truth of a mathematical proposition or statement involving natural numbers and it
provides a logical proof to generalise a mathematical result concerning natural numbers.

A mathematical proposition involving natural numbers is generally denoted by P(n),
(neN). If we substitute » =4 in the statement P(n), the particular statement so obtained
is denoted by P(4). For example, if P(n) is the statement “n(n+1) is even”, then P(4) is
the statement “4(4+1) is even” i.e., “20 is even”.

The proof of a mathematical proposition by the method of mathematical induction is
based on a principle known as the Principle of Mathematical Induction or simply
Principle of Induction, which is given in the next section.

3.2 Principle of Mathematical Induction
It states that if P(n) be a mathematical proposition such that
(1) P(1) is true, and

(i) P(k+ 1) is true whenever P(k) is true, where k is an arbitrary value of »
(i.e. P(k) is true = P(k+1) is true,)

then P(n) is true VneN.

Thus, the method of mathematical induction requires the following three basic steps
in proving a mathematical proposition or theorem.
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(i)  Verification : Verify the validity of P(n) for n=1 (least value of n)

i.e. verify that P(1) is true.

(ii) Inductive property : Assume P(n) is true for n =4k (i.e. for some value &

of n), and then deduce that P(k+ 1) is also true.

(iii) Conclusion : P(n) is true VneN.

Example 1. Let P(n) be the statement

Solution :

Example 2.

Solution :

Example 3.

Solution :

“n? +3n is divisible by 4”.
Is (1) PQ1) true ?
(i) P(2) false ?

When n=1, n*+3n=12+3x1=4, which is divisible by 4.
When n=2, n*+3n=2?+3 x2=10, which is not divisible by 4.
-, P(1) is true, and P(2) is false.
If P(n) is the statement
“n*>10”, neN,
prove that whenever P(k) is true, P(k+1) is also true.
Given P(k) is true i.e. k2> 10, we are to show that
P(k+1) is true i.e. (k+1)*> 10.
Since k+ 1>k, and also since &> > 10,
(k+1)*>k¥>10 = (k+1)y>10
Hence, P(k+ 1) is true.
Prove by mathematical induction that

n(n+1)
2

1+2+3+........... +n= VneN.
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(1) Verification : When n=1,

LS. =1 and RS, = D _12

2 2"

L.S.=R.S.
Thus P(1) is true.

() Inductive property : Let P(k) be true, k being some value of n.

Then
k(k +1)
1+2+3+ ... +k=T
Adding (k +1) to both sides, we get
1+2+3+....... +k+(k+1) = k(k2+1)+(k+1)
_ (k+1)(k+2)
B 2
_ (k+D{tk+D+1}
B 2

P(k+ 1) is true
Thus, P(k+ 1) is true whenever P(k) is true.

(i) Conclusion : Hence, by the principle of mathematical induction,
the proposition P(n) is true VneN.

_n(n+1)
............. n——2

Example 4. Prove by mathematical induction that

ie. 1+2+3+ VneN.

............. n’ = n(n+1)2n+1) > N
6
Solution :  Let P(n) be the proposition

02 = n(n+1)(2n+1)
............. 6 M

12+22+ 32+ eN.

12422+ 32+

1A+1D)2x1+1) 1x2x3

: _ i _
(1) Forn=1, L.S.=1*=1 and R.S. 6 6

1.
L.S.=R.S. Thus P(1) is true.
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(i) Assume that P(k) is true for some value k of n. Then

_ k(k+1)(2k+1)
6

Adding (k + 1)? to both sides, we get

12+22+32+ ... + k2

P+22+ 32+ .. +I+ (k+ 1) = k(k+l)6(2k+l)+(k+l)2

_ (k+1) {2k +1) +6(k +1)}

_ (k+1)(2k2+3k+6)
(k+1)(2k62+4k+3k+6)
(k+1){2k(k6+2)+3(k+2)}
(k+1)(k+2)(62k+3)
(k+1){(k6+1)+61}{2(k+1)+1}

P(k+1) is true.
Thus, P(k) is true = P(k+ 1) is true.
(1) By the principle of mathematical induction, P(#) is true VneN

e 24224324 2= n(n+1)6(2n+l)VneN_

Example 5. Prove by mathematical induction that
_ n(n+1)(n+2) .

12423434+ ............ +nn+1)= 3 ,neN,
Solution :  Let P(n) be the proposition
n(n+1)(n+2)
12423 +34+ ... taptl)=——g3
1A+DHA+2
When #=1, L.S.=12=2 and R.S. = )3( ). 123 o

L.S.=R.S.
Thus, P(1) is true.
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Let us assume that P(k) is true for some value k of n. Then,

k(k+1)(k+2
12423+34+ . +k(k+1)=%
Adding (k+1) (k+1+1)ie. (k+1)(k+2) to both sides, we get
1.2+23+34+ ... +h(k+ 1)+ (k+ 1) (k+2)

k(b +1)(k+2)
=3 +(k+1)(k+2)

(kD) (k+2)(k+3)
B 3
(k+D{(k+1D)+1} {(k+1)+2}
3

P(k+ 1) is true.
Thus, P(k) is true = P(k+ 1) is also true.

Hence, by the principle of mathematical induction, P(n) is true VneN

n(n+1)(n+2
ie. 1.2+23+34+ ... +n(n+1)=%VneN.
Example 6. Prove by mathematical induction that
1 1 1 1  _ n
13 2.3+34+ ............... n(n<1) +1,‘v’neN
Solution: Let P(n) be the proposition
1 1 1 1 _ nm
T3 T 3R TRg T n(niD) " n+l
Wh =1 LS—L=l dRS—L=l
enl’l— P} .._1.2 2311 _1+1 2
L.S.=R.S.

Thus, P(1) is true.
Let us assume that P(k) is true for some value k of n

1,1k
1.2 23 34 77 k(k+1) k+1°

. | . ]
Add e
M8 Dk +1+1) S D)k +2)

1 I 1 1
S S +k(k+1)+(k+1)(k+2)

to both sides, we get

1
1.2 23 34
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k + 1
k+1 (k+1)(k+2)

k(k+2)+1
(k+1)(k+2)
k2 +2k+1
(k+1)(k+2)
_ (k+1y?
 (k+1)(k+2)
(k+1)
(k+1)+1

P(k+ 1) is true.
Thus, P(k+ 1) is true whenever P(k) is true.

P(n) is true for all neN

1 1 1 1 . n
1.2+2.3+3.4+ ............. +n(n+1)‘n+1v”€N'

Example 7. Prove by the principle of mathematical induction that

1.€.

5*"_1 is divisible by 8 VneN.
Solution :  Let P(n) be the statement ‘5*"—1 is divisible by 8.
For n=1, 5*"—1 = 5> —1=24 which is divisible by 8.
P(1) is true.
Assume that P(k) is true for some value k of n
ie. 5%"—1 is divisible by 8.
Writing k + 1 in place of k, we have
52(k+1) _1= 52k+2 _
= 5%52 -1
25.5% —25+24

= 25(5°* ~1)+24, which is obviously divisible by 8 as
5% _1 is divisible by 8.

Thus, P(k+ 1) is true whenever P(k) is true.
P(n) is true V n eN
ie. 51 is divisible by 8 V n eN.
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EXERCISE 3.1

If P(n) is the statement ‘#*>+2 is a multiple of 3°, show that P(2) is true and
P(3) is false.

If P(n) is the statement ‘5" +3n—1 is divisible by 9°, state P(2).
Is @1 P(1) true ?
@) P(3) false ?

If P(n) is the statement %>+ n> 15" and if P(k) is true, prove that P(k +1) is
true.

Prove by mathematical induction that V n € N,

1 2+4+6+ .. +2n=n(n+1).
3n-1
) 144574 +(3n—2)=”(’; )
(i) 1+6+ 10+ +(Sn—4)= 2a(5n-3).
2
) 1+5+12+224 . +”(3”2‘1)=” (’;”).
2
V) 125434 +n3={”(”2+1)}.
: 4n* +6n -1
V) 13435457+ F@n-1)2n+ 1= "En +3 n-l).
. 1.1 1 _2"-1
(Vll) 1+§+2—2+ ......................... +F——2”_1 .
o1 .1 .1 1 _n
(Vlll) 1.3+3.5+5.7+ ................... +(2I’l—1)(2l’l+1)_2l’l+1'
: 1.1 1 1 3"-1
(ix) 1+3+32+33+ .................... +3n_1_—2'3n_1.
(X) 2422433+ e, +2m=2(2"—1).
i) 1242224322+ oo, +n2r=(n-1)2""1+2.
(xi) 12342344345+ ..... +n(n+l)(n+2)=%n(n+l)(n+2)(n+3).
Xiil) 1% +3% + 5%+ +(2n—1)2=%n(2n—1)(2n+1)-
1,1 1 1 n

&iv) Tz 37 710 T Gn=2)Gn+l) 3n+l-
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(xv) 2">n.
(xvi) 3%"—1 is divisible by 4.
(xvi) 97—1 is divisible by 8.
(xvil) a”" —b" is divisible by a — b, (a# b).
(xix) x" -1 is divisible by x — 1, (x# 1).
(xx) a*"—b>" is divisible by a + b, (a#—b).

xxi) a*"+b*"" is divisible by a + b, (a#— b).

(xxii) (1+%)n <n+l

ANSWER
‘630 is divisible by 9’
(1) Yes (i1) No



CHAPTER 4
BINOMIAL THEOREM

4.1 Introduction

l, a—4x, a—l etc. which
X X

have got two terms, are called binomial expressions. We have also learnt how to multiply

We know that algebraic expressions like x —zy, 3x+

a binomial by another binomial or a binomial by itself.
Let us consider the binomial (a + x) where a, xeR.
By actual multiplication, we have

(a+x)!'=a+x
(a +x)?=a*+2ax + x?

(a +x)*=a*+3a’ + 3ax* +x* and so on.

In the above relations, each of the expressions on the right hand side is called
binomial expansion of the binomial (a + x) for the corresponding index i.e. 1, 2 and
3 respectively.

Here, we observe that the expansion of higher powers of (a + x) like (a + x)*,
(a +x)°, (a+x)° etc. become more and more inconvenient. Therefore, we look for a
general formula which will help us in finding the expansion of higher powers of a binomial.

In this chapter, we shall discuss a theorem, known as the Binomial Theorem, which
gives us the general rule for the expansion of (a + x)* where n is a positive integer. The
more general case when n is any integer or a fraction, is dealt with in
higher classes.
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4.2 Binomial Theorem (for positive integral index)

Theorem :

Proof':

If @ and x be any two real numbers and »n be any positive integer, then
(a+x)" =ncyam + "cia™\x+ "c,a"2x? +........ +c,a" X + ... + ¢, X"
We shall prove this theorem by the method of mathematical induction.
Let P(n) denote the proposition :
(a+x)" ="rcya™ + "ca"x+ "c,a"2x? +......... +"c.a" X" +.....4+ "c, X"
When n =1, we have

(a+x) =a+x=lca' +lcx! [ 1, =1, ¢ =]

P(1) is true.

Now, let us suppose that P(k) is true for some positive integer k,
so that

(a+x)k =kcyak + keakx+ke,ak2x2 +.... 4+ ke ak X" +...+ ke xk

Multiplying both sides by (a + x), we have

(a+x)k+1

= (a+x)(kcyak + ke @ x+ ke,ah=2x2 +... 4+ ke ab7xr +... 4+ ke xb)

(K eyt + ke,abx+ ke, @12 +.... 4 ke akrHxr +...+ ke ank )+
(kcyabx+ k@ ix2 + keyah=203 +..... 4+ ke ak x4 +..... 4 ke, xk1)

= Fepatt +(k q+* C’o)a")ﬁr(’fc2 + kcl)ak—lxz S +(kcr + kcr_l)ak—rﬂxr

But, k¢, =1=Fklgy; ke, =1=lc,,, and “c, +* ¢, =*" ¢
(a +x)k+1

— k+l coak+1 + k+lclak x+ k+lczak—l X2+, + k+lcrak+l—rxr +...+ k+lck+1 xk+l
P(k+1) is true

Thus, P(k) is true = P(k+1) is true

Therefore, by the principle of mathematical induction, P(n) is true
VneN i.e.

(a+x)" =n1cjam + "cya™\x+ "c,a’2x? +.....+ "c,a" X" +....+ "c, X"
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Remarks : The expression on the right hand side of the above formula, is called
the binomial expansion of (a + x)" for the positive integral index »n and
the coefficients "c_, "c,, "c,,......... ,"c, are called binomial coefficients.

Note : In the expansion of (a + x)", neN ;

(1) The total number of terms is n + 1 (one more than the index n).

(i) The sum of the indices of a and x in each term is equal to the
index n.

(i) The index of a in the first term is the same as that of the binomial
(a +x) and thereafter goes on decreasing by 1 in each subsequent
term and it becomes O in the last term. On the other hand, the
index of x in the first term is 0 and it goes on increasing by 1
and finally becomes equal to the index of the binomial.

(iv) The binomial coefficients in the terms equidistant from the beginning and
the end are equal. This follows from the fact that "¢, ="c,_,

4.3 Pascal’s Triangle

The binomial coefficients "¢y, ""C;, "Cyyerneennen. ,""c, in the expansion of (a + x)
follow a pattern for different values of n.

When n=0, %, =1

When n=1, !¢, =1, ¢, =1

When n=2, 2¢c,=1,%¢; =2, %c, =1

When n =3, 3¢, =1,3¢;=3,3¢c, =3,3¢; =1

When n=4, *cy =14, =4,%,=6,%; =4, %, =1

When n =5, 3¢, =1,°¢c, =5, ¢, =10,°c; =10, 5¢, =5, °c5 =1 and so on.
These coefficients can be arranged in the form of a triangle as follows :

Ist row (n=10) 1

2nd row (n=1) \/

irdrow(n_=2) \/\/

o 01— ANAN
\/\ /\ /\/

Pascal S tnangle

6th row (n=15) and so on. 1
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In the above triangle, it is observed that each entry (except the first and the last
which are always 1) is the sum of the nearest two entries in the row immediately above
it. Using this fact, we can determine the rows corresponding to n =6, n =7 etc.

This triangle gives us a handy rule for finding the coefficients of a Binomial expansion,
especially when the value of 7 is small. The triangle is due to the celebrated mathematician
B. Pascal and is known as the Pascal’s triangle.

4.4 Some Simple Deductions
In the binomial expansion,
(a+x)" ="cya + "ca™x+ "c,a"2x? +....+ e, a" X +......4 "C, X"
(1) If x is replaced by —x, we get
(a—x)" ="1cya™ —"ca™'x + "cya"2x2 —........ + (=1 "c.amrx" +....... + (=1 rc,x"
(i) Ifa=1, we get
(I+x)" =14 rcpx+ "eyx +...... A 7C, X"+ X (. "cy=1="c,)
(ii1)) If a=1 and x is replaced by — x, we get
(I=x)" =1="rcx + 1cyx? —........ + (=D e, X"+ +(=1)nxn
4.5 General Term in the Expansion of (a + x)”

In the expansion of (a +x)", if we denote the first term by T, the second term by
T,, the third term by T, and so on, then

T, =Ty, ="cya" ="cya™x°

— - 252
T, =T,,, ="c,a"2x

T, =T, ="c;a"3x3 and so on.

In general,
Tr+1 — ncran—rxr
By putting =0, 1, 2, 3, ........... ,ninthe (¥ + 1)* term T, , we get all the terms

of the expansion. So, this (» + 1)* term is called the general term in the expansion of
(a +x).
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Thus, in the expansion of (a + x)’,
the general term= T, ,="c.a""x"

Note : In the expansion of (a —x), the general term = T, ; =(-1)" "c,a""x"

4.6 Middle Term(s) in the Expansion of (a + x)"

We know that the number of terms in the binomial expansion of (a +x)" is n + 1.
So, if n is even, the number of terms (n +1) is odd, so that there will be only one middle
term. If however, 7 is odd, the number of terms(z + 1) is even and hence, there will be
two middle terms.

Casel: n is even.
Here, the number of terms is (n + 1) which is odd. There is only one middle term

th
which is obviously the (%+1) term.

Hence, T, 1 is the middle term.
+
2

Case I : n is odd.
Here, the number of terms (n + 1) being even, there are two middle terms, which

th th
are the (HTH) term and (nTHJrlj term.

Thus, T,,, and T, are the two middle terms.

2 2
Example 1. Expand (3 + 2x)’ by using Binomial Theorem.

Solution :  (3+2x)> =3¢;35 + 5¢,3*(2x) + 3¢, 33(2x)% + 3¢;32(2x)3 + 3¢, 3(2x)* + 5¢5(2x)?

1.243+5.81.2x+10.27.4x2 +10.9.8x3 +5.3.16x* +1.32x>

243 +810x +1080x> +720x> +240x* +32x°

1
Example 2. Expand (2x +y)* by using

Pascal’s triangle. \ /
Solution : The coefficients in the

expansion of (2x +y)* are \ ;/ \1 /

given by the 5th row

of the following Pascal’s \ ,/ \ / \, /

triangle : 1



Example 3.

Solution :

Example 4.

Solution :

Example 5.

Solution :
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Qx+ )t =12x)* +4(2x)° y + 6(2x)* y> +4(2x)y* +1y*
= 1.16x* +4.8x y+6.4x2y* +4.2x)° +1.*
= 16x* + 32x3y + 24)62)/2 + 8xy3 + y4
Write the first four terms in the expansion of (x + 2y)".
The first four terms in the expansion of (x + 2y)'° are
10¢,x19, 10¢,x9(2y), 19,x8(2y)? and 1°¢;x7(2y)3
ie. 1.x', 10x°.2y, 45x*.4y* and 120.x".8)°
ie. x'°, 20x°y, 180x%y? and 960x’y’

0. 4 10 _ 0. _ 9x10 _ 10, _ 8x9x10 _
(Here c =1 "¢ =10, ) =45 and =T %3 —120)

8
Find the 6th term in the expansion of (x—%)

8
In the expansion of (x—%) , we have
T = (_1)}' 8c x8—r (l)r
r+l r X

5
T T 1
6 — 1541 = (_1)5 805)63(})

— 15671
~56

2
X

Find the coefficient of x° in the expansion of (x + 3)%.

Let T, be the term containing x° in the expansion.

Now, T,.,, =3¢.x%7(3)"
Since T, contains x°, we have
8—r==6
= r=2

T, , i.e. T, contains x° and

hence the coefficient of x°= 802.32

=289 = 152
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Example 6.

Solution :

Example 7.

Solution :

Example 8.

Solution :

Higher Mathematics for Class — X

9
Find the term independent of x in the expansion of (2x—3%j .
X
B
Let T . be the term independent of x in the expansion of (2x—3—2j
X

r —r 1 r

Now T, = (-1 °6 295
= (= 9cr(2)9—r(%j (x)9-3
Since T . | is independent of x, the index of x in this term is 0.
9-3r=0
= r=3
T, i.e. T, is the term independent of x
3
1 7Tx8x9 1
—(—1)3 9 of L] = _ —
and T, =(-1)° °¢;(2) (3) 1.1><2><3 .64.27
1
= —84.64.—
27
_ 1792
27
N
Find the middle term in the expansion of (x+;) .
Here, the index 8 is even.
th
There is only one middle term and it is the (%+1) term i.e. T..
4
1

Now, T, =T, , = 8c4x8—4(;)

_ Sx6xT7x8 41

Ix2x3x4 " x*
= 70

Find the middle terms in the expansion of (2x — y)’.
Here, the index 7 is odd.

741\ 743\"
There are two middle terms. They are the (%) and (L)
terms i.e. T, and T..
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Now, T,=T,,, = (1)’ 7¢;(2x)73y3
__5x6x7 4.3
1><2><3'16x
= —560x*y?

and, T,=T, , (=D* Tey(2x)74 y*

— T 8yt
cy.8X7y

S5x6X7 o 3 4
1><2><3'8x
= 280 x° )~

4.7 Properties of Binomial Coefficients
(1) The sum of all the binomial coefficients is 2"

ie. mCy+ "0+ 1Cy F i + e =2n

(i) The sum of the binomial coefficients of odd terms is equal to that of even terms,
each being equal to 2" .

ie. "¢yt cy+"CyF e ="C +Cy + "Cs F e =2n-
Proof: (1) we have
(I+x)" ="rcy + ") x + "o X%+ + ¢, x"
Putting x =1, we have
I+ =1cy+ ey 4 "Co Faveeeann +"c
= et o+ Gt +"c,=2"
(i) we have
(I=x)" =rcy— e x + "Cy X2 — o +(=1)" nc,xn
Putting x =1, we have
(1_1)11 = ”CO - ”Cl + nCZ - 1103 T
= (”c0+”cz+”c4+ .......... ) —(”cl+”c3+”c5+ ........... ):O
= cyt"Cy 0y =71 +"C3+ "C5 F . =k (say)

Then, "Cy+ "¢ +"Cy +"Cy +.....ee. +nc =2k
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= 2"=2k
2n n—1
= k="=2
2
MCy+"Cy 4 "Chp F v =7+ "0y 4 "Cs F e ="
Example 9. Show that
(i) " +27cy +37C3 e +nrc, =n21
() 7y +2.7¢, +3.7C) + oo, +(n+1). ¢, = (n+2)2""

Solution : (i) We have

r.

Now, "¢ +2/¢c, +3.7¢c5+.......... +n’c

(i) "¢

n = TI.

Ln
¢ = lrlar
rnin=1
rr=1 |(n-1)-(r-1)
" ln—1
=L e )G-D)

n—1

= n. c

r=l1
ne, =n""e,, 2c, =nle, 3¢y =n""le, etc.

n" ey +n" e ey e, +n"" ¢

n[" e+ e ey e, +"e 1]
n.2""!
+2. ¢, +3." ¢y F i +(n+1)."¢c

(”co +1¢ 4+ ¢y F.n + ”cn)+("c1 +2.¢y +37¢, +........+n.”cn)
2" +n 2" [using the result (1)]

2.2 ot
(n+2).2""

4.8 Simple Applications

In this section, we give some simple applications of Binomial Theorem, as illustrated
in the following examples.
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Example 10. Compute (98)* using Binomial Theorem.
Solution : We have

(98)*

(100 — 2)*

= %¢,.100* =% ¢,.100°.2 +* ¢,.100%.2% —* ¢,.100".2° +% ¢, .2*
= 100" —4.100°.2+6.100%.4-4.100.8+16

= 100000000 — 8000000 + 240000 — 3200 + 16

= 100240016 — 8003200

= 92236816

Example 11. Using Binomial Theorem, prove that 6" —5n—1 is divisible by
25 for neN.

Solution : We have

6" = (1+5y

= 1+ ncl_5_|_ ncz_52+nc3.53+ ................ —+5n

= 1+5n+ ”C2.52+”C3.53+ ..................... +5n ( ”cl :n)
= 6"—51’1—1 — "02.52+nC3.53+ .................... +5n

= 25 x (an integer)

6" —5n—1 is divisible by 25 for neN.

EXERCISE 4.1
1. How many terms are there in the expansion of
(1) a-x) (i) (x+4y)° (iii) (1-3x)" (@{v) 2+5p)* ?
2. Using Pascal’s triangle, expand

(i) (x+y)y (i) (a+2x)* (iii)) (3 —2x)
3. Expand the following using Binomial Theorem :
(1) (1+x) (i) (a—2x)° (i) (x+2y)*

X

w(el] @ o (5
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10.

11.

12.

13.

14.

15.

16.

17.
18.

Higher Mathematics for Class — X

Find the first four terms in the expansion of (x — 2y)".

Find the 6™ term in the expansion of (1 +x)'.

2
X

Find the 11" term in the expansion of (x + 2y)".

8
Find the 7" term in the expansion of (X—Lj .

Find the term containing x° in the expansion of (1 + x?)°.

9
Find the term containing x° in the expansion of (x2 +1) .

X
1 10

Find the coefficient of x* in the expansion of (x—g) .

Find the term independent of x in the expansion of

9 12 15
(i) (ﬁ%) (i) (x—x%j (iif) [x+x—22j

Find the middle term in the expansion of
1 (1+x)° (i) (x—y)® (i) (2x +3y)'°
Find the middle terms in the expansion of
9
i) Gty (ii) (x + %j (iii) (x—2y)"

If ¢ denotes the binomial coefficient "c,, prove that

1)  cp+2c+4c) + . +2"c, =3"
0 1 2 n
(i) cp+3c;+5c, Foiiiiaiiins +(2n+1)c, =(n+1)27
€ LG ¢, _n(n+l)
(ii1) CO+201+302+ .................. +ncn—l_—2
V) € —2C,+3C;—ieeiiiiieneeninnnn. +(=1D)" nc, =
) ¢ —2¢,+3c " ne, =0

Evaluate the following by using Binomial Theorem

(1) 99* (i) 102° (iii) 10013
Show that (2 +4/5 )4 + (2 -5 )4 is rational.

Using Binomial Theorem, prove that 4" —3n — 1 is divisible by 9 for neN.

Using Binomial Theorem, prove that 23" —7n (neN) always leaves the

remainder 1 when divided by 49.



10.
12.
13.

15.

Binomial Theorem

ANSWER
(i) 8 (i) 11 (iii) 16 (iv) 21
(i) x*+5x*y+10x°y? +10x%y° +5xp* +3°
() a*+8a’x+24a’x* +32ax® +16x*
(i) 243 —810x +1080x2 —720x3 + 240 x4 —32x5
(i) 1+5x+10x2 +10x° +5x* +x°
(i) a®—12a°x+60a*x* =160a’x’ +240a*x* —192ax’ + 64x°
(i) x*+8x’y+24x°y* +32x° +16y*

(iv) x+7x° +21x° +35x+375+2—31+ls+

X X x
(V) 32x° —80x*y+80x’y* —40x%y° +10xy* —y°

€
7

6 4 2 2 4 6
(vi) x_6+_6x4 +15)2C +20+15‘21 +—6a4 +4
a a a X X X

x'%, —20xy, 180x*y%, —960x"y°

28

2526 6. S5 7. B 200 8 20x0 9. 84
X

—120 1l (i) 84 (i) 495 (iii) "¢2°
(i) T,=20x* (i) T,=70xH*  (iii)) T,="c2°3%%"
M T,=35x"7°, Ts=35x"y"

() T,=126x, T, =12

(i) 96059601 (i) 11040808032  (iii) 1003003001



CHAPTER 5
MATRICES

5.1 Introduction

In 1850, an English mathematician James Joseph Sylvester (1814-1897) used
rectangular arrangements of numbers for storing information. He gave the name matrix to
such a rectangular arrangement. Later on, other mathematicians recognised how
conveniently matrices can be used to write numerical data, system of a large number of
equations in several unknowns etc. in a compact form. Among others who have contributed
to the development of matrix theory, mention may be made of Arther Cayley (1821-1895),
William Rowan Hamilton (1805-1865), Charles Hermite (1822-1901), F.G. Frobenius
(1849-1917) and M.E.C. Jordan (1838-1922).

Having originated as mere stores of information, matrices have now found
applications not only in Mathematics but also in Physics, Chemistry, Biology, Sociology,
Economics, Engineering, Psychology, Statistics etc.

In this chapter, we shall study elementary properties of matrices and basic laws of
matrix algebra.

5.2 Definition of a Matrix

Suppose Chaoba has 7 books. We can express this information by the symbol [7]
with the understanding that the number written inside the pair of brackets, is in reference
to the number of books Chaoba possesses.

However, if Chaoba has 7 books as also 4 pens, we convey the information by [7
4] with the understanding that the first number represents the number of books and the
second, the number of pens Chaoba has.
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Next suppose Chaoba has 7 books and 4 pens while his friend Ali has 9 books
and 5 pens. This information can be displayed in a tabular form as follows :

Books Pens
Chaoba 7 4
Al 9 5
We can further shorten the display as below :
7 41— Ist row
{9 5} — 2nd row
2
Ist 2nd

column column
Implied in this display, are the following assumptions :

(1)  The entries in the first row represent the objects (books and pens) that Chaoba
possesses.

() The entries in the second row represent the objects that Ali possesses.
@) The entries in the first column represent the number of books.
(iv) The entries in the second column represent the number of pens.

Thus, the entry in the second row and the first column, represents the number of
books Ali possesses. Each entry in the display may be interpreted similarly.

We now see how arrangement of numbers in rows and columns can be used
conveniently to represent given information. Such an arrangement of numbers is called a
matrix. A formal definition of matrix is given below :

Definition : A rectangular array of mn numbers, arranged in m rows and n
columns, enclosed in a pair of brackets, is called a matrix of order m xn (read as m by
n) or an m*n matrix.

Each number in a matrix is called an element or entry of the matrix.

In the matrix

5 il

there are two rows and two columns. Hence its order is 2x2.
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The matrix [7 4] has 1 row and 2 columns so that it is of order 1x2. And the

matrix [;} has 2 rows and 1 column so that its order is 2x1. While specifying the order

of a matrix, the number of rows is always written first followed by the mark % and then
by the number of columns.

We use capital letters to denote matrices and small letters with two suffixes to denote
elements in specific positions.

For instance, a matrix A with m rows and » columns may be written as

al 1 al 2 al 3 ----- al,l
A _ a2 1 a22 a23 ----- azn
A1 Ay Az e Dn

A notation of this type is known as a double suffix notation. The suffixes i and j in
the element a;, indicate the row and column in which the element occurs. Here a, may
be called the (7, j)th element of the matrix. The above matrix may also be denoted shortly
by the symbol [a,].

As in the case of vectors, in the study of matrices also, numbers are usually referred
to as scalars.

Consider the matrix

13
A—[475}

Clearly A is of order 2x3 and
a, = the element in the 1st row and Ist column = (1,1)th element = 2
a,, = the element in the 1st row and 2nd column = (1,2)th element = 1
a,, = the element in the 1st row and 3rd column = (1,3)th element = 3
a, = the element in the 2nd row and Ist column = (2,1)th element = 4
a,, = the element in the 2nd row and 2nd column = (2,2)th element = 7
= the element in the 2nd row and 3rd column = (2,3)th element = 5

Example 1. Consider the following information about the result of a monthly test in class
X in a school :

Mathematics Science Social Science
Pass 46 39 44
Fail 4 11 6
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Express this information in the form of a matrix and specify its order. What
does the entry in the 2nd row and 3rd column represent ?

Solution :  The given information may be stored in the following matrix :
_|46 39 44
A ‘[ 4 11 6}

This matrix has 2 rows and 3 columns and so it is of order 2x3.

The entry 6 in the 2nd row and 3rd column represents the number of
students failed in Social Science.

5.3 Types of Matrices

Rectangular matrix : Any mxn matrix (where m is not necessarily equal to 7) is
called a rectangular matrix.

2 4 3. .
For example, -3 5 1| 182 rectangular matrix.

In fact, any mxn matrix is a rectangular matrix whether m=n or m = n. However,
some authors call an mxn matrix rectangular only when m # n.

Square matrix : Any nxn matrix is called a square matrix of order »n or an n-
rowed square matrix.

Thus, in a square matrix, the number of rows is equal to the number of columns.

For examples,

-3 4 1

Row matrix : A matrix having a single row is called a row matrix.

1 1 -1
V'dland| 2 3 5 : :
-2 3 are square matrices of order 2 and 3 respectively.

For example, [1 2 5] is a row matrix.
Every matrix of order 1xn, for some ne N, is a row matrix.
Column matrix : A matrix having a single column is called a column matrix.

For example,

X
{y } is a column matrix.
z

The order of a column matrix is #x1, for some 5 N,
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For any matrix A=[a], the elements a, for all possible values of 7, are called the
diagonal elements and the line along which they lie, is called the principal diagonal or
the leading diagonal of the matrix.

Diagonal matrix : A square matrix is said to be a diagonal matrix if all its elements
other than the diagonal elements are zero.

For example,

100 2.0 0
0 2 Oland|0 5 0 . .
0 0 3 00 ol ¥ diagonal matrices of order 3.

Scalar matrix : A diagonal matrix whose diagonal elements are all equal, is called
a scalar matrix.

0 2 00 3

Identity matrix or Unit matrix : A diagonal matrix whose diagonal elements are
unity, is called an identity matrix or a unit matrix.

2 0 300
Thus, [ Jand 0 3 O] are scalar matrices.

For examples,

1 00
10
[0 J and {8 }) (i] are the unit matrices of order 2 and 3 respectively.

Null matrix or Zero matrix : A matrix all of whose elements are zero, is called
a null matrix or a zero matrix.

Examples are

0 0 0|0 O
00 0o o ¢
Any matrix having at least one non-zero entry is called a non-zero matrix.

Triangular matrices : A square matrix all of whose elements below the principal
diagonal are zero, is called an upper triangular matrix.

A square matrix all of whose elements above the principal diagonal are zero, is
called a lower triangular matrix.
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. 2 4 3 1 00
The matrices 0 1 1|and|[4 1 O
0 00 3 5 2
are examples of upper triangular matrix and lower triangular matrix respectively.
5.4 Equality of Matrices
Two matrices are said to be equal if they are of the same order and their
corresponding elements are equal.
Thus, the matrices A=[aij] and B=[bl.j] are equal if
(i) they have the same number of rows and the same number of columns and

(i1) aijzbij’ for all admissible values of i and ;.

b 2 5. .
For example, [i 5} = [l y} if and only if
a=2, b=5 x=1 and 5=y
Example 2. Let

A<l-[3 73 4]

Find the order of A. Also find a , and a,,. Does a,, exist ?
Solution : There are 2 rows and 3 columns in the given matrix A.
Hence its order is 2x3.
Here,
a = the element in the 1st row and 3rd column = 6
and a,, = the element in the 2nd row and 2nd column = 4

But a5, 1.e. the element in the 3rd row and 1st column does not
exist as there is no 3rd row.

Example 3. A matrix A has 6 elements. Find all possible orders A can have. What
if A has 5 elements ?

Solution : Let us find all ordered pairs of positive integers, the product of whose
elements is 6. The possible ordered pairs are

(1, 6), (6, 1) (2, 3) and (3, 2).
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Hence the possible orders of A are
1x6, 6x1, 2x3 and 3x2.

In case A has 5 elements, the possible orders are 1x5 and 5x1 (as
1 and 5 are the only factors of the prime number 5).

Example 4. Find the 3x3 square matrix [a,] where g, :H-TJ.
Solution : Here
g o=l _1+2 3 _1+3_,
11 2 > Y12 2 2 ’ 13 2
a1 = E = é o P M = 2 a = M — i
21 2 2 ’ 22 2 2 23 ) 2
o=t 53425 G =3F3 5
31 2 s 432 2 27 33 2
[a 1 4 dpg
the required matrix = | 421 42 9
431 a3 a3
T
1 > 2
3 5
= |2 2 2
5
22 )
. . X 2y+z 3 6
Example 5. Find x, y, z, p if [y+2p z)—}k 2x} = [2 4}.
Solution : Equating the corresponding elements of the two given equal matrices,
we get
X =3 e (1)
2y +z2=06 v, (2)
VFE2D =2 e, (3)
and z+2x =4 e 4)

From (4), z = 4 2x
=4 -6, using (1)
=2
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From (3), pZ%(z—J’)

1
= 5(2_4) (‘.' y = 4)
= -1
Thus, x=3,y=4, z=-2and p = 1.

EXERCISE 5.1

Consider the following information regarding the number of boys and girls reading in
class X in three schools A, B and C.

Schools No. of boys No. of girls
A 26 31
B 35 27
C 42 22

Represent the information in the form of a 3x2 matrix. What does the element in the
second row and first column represent ?

Let
12 03
6 4 -6
- 7 3 3
2 -2

Find the order of the matrix. Find %3 %2 %3 441 anday, Does Ay, exist ?
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State the type of the following matrix :

1 2 2 0 2 1
O |3 4 @ 1o 3 @ 1o 3

(iv) v [2 1] (vi)

_ ., _
(vi)

(viii)

N S

0 0
3 0
5 1

S NN O
N O O

0 (i)
— O —

A matrix A has 24 elements. Find all possible orders A may have.
If A has 7 elements, what are the possible types A can be of ?
Find the 3x3 matrix [aij] where

. .. .. .. [+ 27
O a;=20-)) (i) a; =2+ (iii) a; = %
i —(i_j)z =2i—-3j+1 ; i+]
W) a; = B (V) a;=2i=3j+ i) a; =(-D"

Is the following equality possible for any values of x, j, z ?

34l
HE

xX+y y+z
x+2z y+2x

Find g, b, ¢, d when

a+b b+c
a+c b+d

Find the values of x, y, z if

X+y+z 6 Xty
(i) YEZI=IS T i) ["‘y 2x_y}=[l 4} Gi)y |Y*?
ol 2z 0713 0 i

H

5
7
8

|
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ANSWER

26 31
h; %ﬂ, the number of boys reading class X in school B.

X i = = = = ) 1
4x3, a,=6, a3, a8, a,=2, a,=2; a, doesnot exist.

(1) square matrix (i) diagonal matrix (1) upper triangular matrix

(iv) column matrix (V) row matrix (vi) zero matrix

(vil) lower triangular matrix (viii) diagonal matrix (ix) scalar matrix.

1x24, 2x12, 3x8, 4x6, 6x4, 8x3, 12x2, 24x1; a row matrix or a column
matrix.

1 3 7
0 -2 -4 4 5 33
4 5 8
o 2% 2 @l i) |3 3
4 2 0 8 9 S 1 5
- 13 3
0o L 2 )
| 2 | 0 -3 -6 1 -1
_0_ _ _ _
v |2 | 2 w [2 71 v |11
L 1 -2 1 -1
> 0 i
No.
a=2,b=3,¢c=1, d=1

1) x=1, y=2, z=3

(i) x=3, y=2, ZI%

(i) x=3, y=2, z=5
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5.5 Operations on Matrices

(a) Addition of matrices

Let A and B be two matrices of the same order. Then the sum of A and B, denoted
by A+B is defined as the matrix, each element of which is the sum of the corresponding
elements of A and B.

. A=|% 4 a13} B:[bn by, b13:|
For example, if [021 ayy oy and by by, by

then

aj +byy ap+by a13+b13}

A+B={
Ay +by  aypt+by ay+by

The sum of two matrices of different orders is undefined. In fact, the sum A+B of
two matrices A and B is defined only when they have the same number of rows and the
same number of columns. In such a case, the matrices A and B are said to be
conformable for addition.

(b) Multiplication of a matrix by a scalar

1 2
For A= {_1 3} let us calculate A + A. Clearly
2 4
A+A=
-2 6

It is natural to denote A+A by 2A. We observe that each element of 2A is 2 times
the corresponding element of A.

Here we define the product kA for any scalar k (integral or not) and for any matrix
A as follows :

If k£ is a scalar and A, a matrix, then the product kA is defined as the matrix
obtained on multiplying each element of A by .

4 a, a
For example, if A= b b b | then for any scalar £,
Lo Dy D3

kA=

[ ka, ka, ka,
| kb, kb, kb,
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This operation is often called the multiplication of a matrix by a scalar.

If k=1, clearly kA=A and if k = —1, then kA= —A where —A is the matrix each
element of which is the negative of the corresponding element of A. The matrix -A
is called the negative of A.

(¢) Subtraction of matrices

If A and B are two matrices of the same order, then the difference A-B is defined
to be the matrix A+(—B).

Every element of A—B is obtained by subtracting the corresponding element of B
from the corresponding element of A.

a., a, a b, b, b
ayp 4y Ay by, by Dy

a,—b, a,—b a,.—b
=0 Q=0 4303
A_B{

Ay —by  ay —by ay—by;

Since addition of matrices is based directly on the addition of their elements which
are numbers and since addition of numbers is commutative and associative, therefore it
follows that

A+B=B+A
and (A+B)+C=A+ B+ 0
whenever A, B, C are matrices of the same order.
Thus, matrix addition is commutative as well as associative.
Further, the distributive law
k(A + B) = kA + kB
holds when k£ is any scalar and A, B are matrices of the same order.

If A is any matrix and O is the null matrix of the same order, then it is easy to see
that

A+O=Aand A-A=0

Example 6. Verify the associative law of matrix addition for the matrices

1 2 4 1 1 5
A= , B= and C= .
L e el
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Solution : We have
1 2 4 1 1+4 2+1
A+B= + =
{3 4} {2 O} L+2 4+O}
5 3
15 4

(A+B)+C=E i}{lz 53}

L] p— 1)
s, ee=[$ DL 33 ¢
asweo=[} 2[5 ¢
L] p— @

From (1) and (2), we obtain
(A+B)+C= A+(B+C)

Hence verified.

Example 7. Find a matrix C such that A+B+C=0 (O denotes a null matrix) where
121 -1 3
A‘[3 4} and B‘[ 2 —5]

2 1 -1 3
Solution : Here, A+B:[3 4}'[ 2 —5}

_|2-1 1+3
T 13+2 4-5

|5 A
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By the given condition
A+B+C=0
C=-(A+B)+0
=—(A+B)
-1 -4

|

91

Example 8. If A=B) _% ﬂ and B=[12 é :ﬂ find 3A+2B.
Solution : Here,
12 3] [3 6 9
3A‘3[0 -3 4}‘[0 -9 12}
wma 28=37 5 T3]3 5 o]

{3 6 9} [4 2

3A +2B = +

0 -9 12 2 0
[3+4  6+2 9-4

10+2 -9+0 12-6

|

5
6

Example 9. Find the matrices A and B, if

A+B=; i” and A—B:B)
Solution : Here,
S
A+B= DL | e (1)
15
and A-B=|, _7} ............ )

Adding (1) and (2)

—4
y

}

|

5
-7

}
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sl b 3B ]

_1/8 8| |4 4
A=3ls -l 3]
Then B=A-A+B

= A —(A-B)

=[? _ﬂ—[%) _57} [using (2)]
]

Example 10. Find x and y such that

F2], =3[ 13]
-3 2]7[-12

Solution : We have

T3P 217 -12

- [

2x=3y |_| 13
= [—3x+2y}_[—12}
Comparing elements in corresponding positions, we get
2x-3y=13 ... (1)
and —3x+2y=-12 ........ (2)
Adding (1) and (2),
-x—-y=1 ... 3)
Subtracting (2) from (1),
S5x-5y=25
= X—y=5 4)

Solving (3) and (4), we obtain x =2, y = -3.
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(d) Multiplication of matrices

Let A and B be two matrices such that the number of columns of A is equal
to the number of rows of B. Then the matrices A and B are said to be conformable for
the product AB. And the product AB is defined only when A and B are conformable for
this product.

As an example, let us take

a4 a3 by by,
A=|ay ay ay and B=|b, by

asy dz diz 31 O3

Here, the number of columns of A=3= the number of rows of B. So A and B are
conformable for the product AB.

The product AB is defined as the matrix

aybyy +apby +apsbyy  ay by +aby, +agsbs,
Aybyy +bybyy +aybyy  ay by +ayby, +aybs,

ayibyy + ayoby +assbyy  agbyy + ayby, +aysbs,

To get the product AB, we proceed by taking the 1st row of A and the Ist column
of B and obtain the product of each element in the row with the corresponding element
in the column. The sum of the products so obtained, is called the inner product of the
row and column under consideration. We take this inner product as the element in the
Ist row and the Ist column i.e. (1,1)th element of the product AB. Next we form the
inner product of the first row of A and the second column of B and take this product as
the (1,2)th element of the product AB. In general, we find the inner product of the ith
row of A and the jth column of B and take it as the (i,/)th element of the product AB.
In this way, we compute each element of the product AB.

We refer to this process of finding the product AB as “row by column rule”.

Here, observe that A is 3x3 matrix and B, 3%2 matrix and the product AB is 3x2
matrix (where 3 indicates the number of rows of A and 2 indicates the number of columns
of B). In general, if A is mxn matrix and B, nXxp matrix, then the product AB is an
mXp matrix.

Two given matrices A and B conformable for the product AB, may not be
conformable for the product BA and even if they are, AB = BA 1n general. This means
that matrix multiplication is not commutative.



94

For example, if

BA is undefined.

Again, if

and

so that

Higher Mathematics for Class — X

1 2 4
A:1 3 andBZSathen

1 2(|4| |4+10| |14
AB= 1 31l5 - 4415 - 19 whereas the product

1 2 4 1
A:1 3 andB:5 1a‘[hen
1 2774 1] [4+10 1+2
AB= =
1 3[|5 1| [4+15 1+3
14 3]
19 4]
4 111 2] [4+1 8+3
BA = =
5 1)1 3] |5+1 10+3

5 11
“ 16 13

AB # BA -

When A is a square matrix, we can form the product AxA which we denote by
A?. Inductively we can form the products denoted by A%, A* etc.

Again if A, B, C are matrices such that A and B are conformable for the product
AB and B and C are conformable for the product BC, then it can be shown that

(AB)C = A(BC).

It means that matrix multiplication is associative.

It may also be shown that the distributive law,

A(B+C) = AB + AC

holds for matrices A, B, C provided they are conformable for the products and

the sum.
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Example 11. If A is any square matrix of order 3 and I, the unit matrix of the same
order, show that AI=IA=A.

Solution : Let
a b ¢
a; by ¢
Then

fa, b ¢ [[1 0 0

las by ¢ ||0 0 1

[, 1+b5,.0+¢,.0 a.0+b.1+¢.0 a.0+b.0+c.1
| a3.14+03.0+¢;.0 a3.0+D;.14¢;.0 a;.0+5;.0+¢5.1
_al b ¢

K& by ¢

1 0 0llag b ¢

10 0 1lj[ay by o

(@, +0+0 b +0+0 ¢, +0+0
=|0+a,+0 04+b5,+0 O0+c,+0
10+0+a; 0+0+b; 0+0+c,

a b ¢
a; by ¢
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Example 12. Form the products AB and BA when

1

@) A=[3 2 1] and B=|2
3
1 0
1 20
. A=|0 1 B=
(i1) Lo and {0 2 J
Solution :

1
(i) AB=[321]|2
3

= [3x1+ 2x2+1x3]
= [10]

1
BA=|2[[3 2 1]
3

[1x3 1x2 1x1
=|{2x3 2x2 2xl1
_3><3 3x2 3xl1

Il
O N W
N A~ DN
W o =

1 0
.. 1 20
@ AB=|0 1
0 21
1 0
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1+0 2+0 0+0 1
=10+0 0+2 O0+1|=|0
140 2+0 0+0 1

- 1 0
1 2 0

BA = 0
0 21

- 1 0

[1+0+0 0+2+0] [1
10+0+1 0+2+0] |1

97

2 0
2 1
20

)

Example 13. 1If A ={

1 3 4
and B= , show that
-2 1 -1

A*-B*#(A+B)(A-B).

Solution : We have
5 1 1)1 1 -1 1-2
A’ = =
-1 =21|-1 =2| |=1+2 -1+4
o -1
1 3
, [3 43 4] [9+4 12-4
B = =
1 -1][1 -1 3-1  4+1
_‘13 8
125
A2 B 0 -1] 13 8] [-13 -9
1 3 25 -1 =2
_ ALB- 1 1 N 3 4] 74 5
Again, o1 =201 <1 o =3
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I 1 3 4 -2 -3
A-B= - =
-1 =2 |1 -1 -2 -1

4 5-2 -3
(A+B)(A—B)={O _3}{_2 _J

[-8-10 -12-5
| 0+6  0+3
[-18 -17
|6 3
Thus, A?-B? #(A+B) (A-B).
Example 14. Find a 2x2 matrix A such that

A S

Solution : Let

a b2 3] [-11 -6
Then ¢ dllt -2]7| 3 8

[2a+b 3a—2b}_{—11 —6}

= |2c+d 3c-2d 38
2a—|—b=—11 .............. (1)
30=2D=—6 e, (2)
2C+d:3 .............. (3)

and  3c—2d =8 oot (4)

From (i) and (2), we get a=—4, b= -3
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And from (3) and (4), we get =2, d= -1

-4 -3
Hence A= .
2 -1

I 2
Example 15. If A= {2 3} prove that A>~4A=I,

where I is the unit matrix of order 2.
A2 1 2101 2
12 32 3
B 1+4 2+6 B 5 8
|2+6 4+9| |8 13
1 2 4 8
and 4A =4 =
2 3 8 12
5 5 8] [4 8
A —4A = -
18 13 8 12

1o
o1

=L

Solution : Here,

Example 16. Solve the matrix equation :

: LM

Solution : We have

] S
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. the equation becomes

2x+3y| |7

3x=2y| |4
Equating elements in corresponding positions, we obtain
and 3x-2y=4 e (2)

Solving (1) and (2), we find that x=2 and y=1.

Example 17. Show that for the non-zero matrices

1 -1 2 3
A= and B= ,
-1 1 2 3

(1) AB=0 and (ii)) BA#O.

Solution : We have
1 -1][2 3 2-2  3-3
AB = =
{—1 J{z 3} {—2+2 —3+3}
0 0]
= = O .
0 0
2 31 =1 2-3 —2+3
and BA = =
{2 3[—1 J {2—3 —2+3}

-1 1
= ¢O.

Remark : There are non-zero matrices A and B (as in the above example) such
that AB=0.

EXERCISE 5.2

1. Find 2A — 3B when

_ 12 -1 -2
@) A—L, 4} and B_L 3}
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2 3 4 1 23
(i) 43 2} and B L }

| 1 2

1 -1 2 -2 1

(@ A={2 0 3|and B=|1 2 3
4 3 0
S

3 5 1 =2

> 27 3 3 1

_ 5 4 5
() ‘i 293 and B=|1 3 3
5 4 = 5 7

2 2 2 9 L

Find a matrix C such that

. 1 -2 -2 1
@ 2A+B+C=0 where A= - and B =

. 1 4 -1 2
@ 2A-3B+C=0 where A= 3 5} and Bz{ }

-3 4 -1 2
@) A+ B+2C=0 where A= 0 1 and B=

, 13 3 2
(iv) 3A-2B+ C=0 where A= and B=

4 2 21
1 -3 4 0
v) 2A-5B+3C=0 where A=|-1 2|and B=|-1 2
30 6 3

Find the matrices A and B if

. {3 4} {5 2}
i A+B= and A-B=
0 7 6 3
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. 33 30
(i) 2A+B= and A+2B=
18 —4 7

-4 7 -1 9 7
(i) 2A+3B= and 3A+2B=
7 2 8 5 8
Find the values of x and y if
5 N -1 3
L _
O M3 277
11 y 1] [-4 5]
= 2 +3 =
@y x} L 2| {3 10 |
x y] [x =5] [6 x+y]
L 2} {—1 4 {4 2 |
If
1 -1 1 2 1 4
A=|2 0 -4| B=|1 2 3
3 -1 1| 4 25
-1 2 1
and C=| 2 -1 3 ,
31 =2
find (i) 2A + B-C (ii) A+ 2B - 2C.
Compute the following products
2 2
0 12 3]|-2 i |2 2 3]
1 1
2 302
1 -1 1 A Ly 1
@ |-2 3 2 (iv) )
-1 1 -1 1



10.

I1.

—_
I
8]
—
w

(ix) [x y Z]

0 =
\b‘b‘
a s 0o
=
N

010 0 00

If A=|0 0 I|and B=|1 0 0

0 00 010
A’B + BA?=A.

1 2 3|6
5 6|1
-1 0|1
1 1 -1
3 -4 2
-2 5 1
, show that

0 1 -
A B 1 2 and C = 21 ,
-1 2 2 3 11

verify that (i) (AB)C = A(BC)
(ii) A(B+C)=AB + AC.

12 2 1
If  A=|_, ;|and B=| 1, verify that

(A+B)? #A? +2AB+B*.

1 1 31 2 3
If A= ,B= and C= , show that
2 2 2 0 3 -2

AB=AC although B« C.
Show that AB # BA when

) A:{1 2} and B:{ 2 _1]
3 4 )

103
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12.

13.

14.

15.

16.

17.

18.

19.

Higher Mathematics for Class — X
2 3 1 10
1 Ojand B=| 0 -1 1].
1 0 1 23

1 0
I A= E show that

A -2A+A=0.

2

K A=
:

1
4} , show that A”? - 6A +51=0.

where I is the unit matrix of order 2.

1 2
A= 4}, verify that A2 — 5A + 81 = 0.
1 0
g A=l 1 find A’ — 3A + 2L
_2 -
[0 0
It A=l | show that (al+bA)’ =a’1+3a’bA

where I 1s the 2X2 unit matrix.

2 1

5 2} , show that A2 —4A — 1= 0. Hence

A

find a matrix B such that AB =1

0 -1 2 2 -
If A= , B= and C= 6 -4 , show that
-1 0 -1 -1 9 -6

@ A=1 (i) B2=B (i) C=0.

} , find a matrix B such that AB = 1.
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1 -1 1 1 4
_ _ 31
20 A=[2 3 0 B=l 0 2] C:{_z 4}’
32 -1 -1 1

verify that (AB)C = A(BC).

2 3

A=
21, If {_4 |

}, find k such that A>-kA+14I1=0.

22. Find x and y, when

o [ 2L
o [ LHY
(i —; _ﬂBH

v)
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A_'l e
e I T O S TR QS )

4. O x=Ly=2 (1) x=2,y=2 (1) x=3,y=-1

5 -3 4] 7 -3 7
s @ |3 3-8 @ |0 6 4
7 -1 9 5 -5 15
2 4 6
1 s
6. @ [11 G |72 7 70 G {_5 _8}
12 3
13 7
. 5 _7 _3 az+b2 O . 4 7 7
(IV) _3 4 1 (V) O az +b2 (Vl) _1 O 7
T 4 o1 -1
N 135 10 -4
(vii) (viii)
12 15 4 6
10 5
(iX) [ax® +by* +cz? +2hxy+2 fiz+2gzx] (%) 12 2
2 -1 -2
2 S|
5. | 2 73 73 17 B= 19. B= 21, k=3
I 5 -2 _5 2

22, @) x=2,y=1 (i) x=-2, y=3 (i) x=3, y=5.
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5.7 Transpose of a Matrix

The matrix obtained from a given matrix A, by changing the rows into columns and
vice versa, is called the transpose of A and is denoted by A' or A",

1 2

3 4 1 35
For example, the transpose of is 2 4 6

56

It is readily seen that if A is an m*n matrix, then its transpose A' is an 7 xm matrix.
Further, the element in the ith row-jth column of A i.e. the (i,/)th element of A, becomes
the (j,7)th element of A'.

Theorem 5.1 For any matrix A, (A")'=A.

Proof : Let the order of A be mxn. Then A' will be an nxm matrix and hence (A")'
will be an m xn matrix. Thus A and (A')' are matrices of the same order.

Further, (i,/)th element of (A")' = (j,i)th element of A'
= (ij)th element of A

It follows that (A")=A (both being of the same order and corresponding
elements being equal).

Theorem 5.2 1f A and B are matrices of the same order, then (A+B)'=A+B'".

Proof : 1f A and B are of order m xn, then both (A+B)' and A+B' are of order nxm.
Thus (A+B)' and A+B' are matrices of the same order.

Further, (i,/)th element of (A+B)' = (j,i)th element of A+B
= (j,0)th element of A+(j,i)th element of B
= (iy)th element of A'+(i,j)th element of B'
= (i,j)th element of (A'+B")
Hence (A+B)' = A+B'
Theorem 5.3 1If k is a scalar, then (kA)' =kA' for any matrix A.

Proof : 1f A is of order mxn, then both the matrices (kA)' and kA' are of the same
order nxm.
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Now, (i,/))th element of (kA)' = (j,i)th element of kA
= kx(j,i)th element of A
= kx(ij)th element of A’
= (ij)th element of kA'

Thus (kA)' and kA' are matrices of the same order whose corresponding
elements are equal. Hence (kA)=kA'.

5.4 If A and B are conformable for the product AB, then (AB)=B'A".

Proof : If A is mxn matrix and B, nxp matrix, then AB is mXp matrix so that (AB)'

Remark :

1S p>xm matrix.

Again B' is pxn matrix while A' is nxm matrix so that the product B'A' is
p>xm matrix.

Hence (AB)' and B'A' are matrices of the same order.
Now, (i,/)th element of (AB)' = (j,i)th element of AB

= inner product of jth row of A and ith column
of B

= inner product of ith column of B and jth row
of A

= inner product of ith row of B' and jth
column of A’

= (ij)th element of B'A'

Thus (AB)' and B'A' are matrices of the same order and their corresponding
elements are equal. Hence (AB)=B'A'.

Here, by the inner product of ith row of A and jth column of B we mean the
sum of the products formed by multiplying each element in the ith row of A by
the corresponding element in the jth column of B. For example, if [a, b, ¢|] is

a,
b,

} is a column, then their inner product is the sum
C2

a row and {

a,a, +bb, +cc,.
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5.8 Symmetric and Skew-symmetric Matrices

A square matrix A=[a,] is said to be (i) symmetric if a;=a,
(i1) skew-symmetric if a,=-a,

For examples,

-3 a h g
S| and h b f
-3 5 4 g f c
are symmetric matrices, whereas
0 2 -3 0 a b
-2 0 5 and | ¢ 0 c
3 -5 0 -b —c 0

are skew-symmetric matrices.

Obviously, a square matrix A is symmetric if and only if it coincides with its transpose
i.e. A=A and skew-symmetric if and only if A'=A.

For a skew-symmetric matrix A=[a_], we should have by definition a ,=-a, (for
any i) i.e. a,=0. Thus, every diagonal element of a skew-symmetric matrix is necessarily
Zero.

Theorem 5.5 Every square matrix can be expressed in one and only way, as a sum of
symmetric matrix and a skew-symmetric matrix.

Proof : Let A be a given square matrix and let

B=%(A+A’) and C:%(A—A’)

Then B=| J(A+4) [~La+ )
_ 1 / A _1 /
= S[A+ &S ] 3(&+A)
1 ,
= S(A+K)

=B
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!

and C = B(A—A')} =%(A—A')’
At oandLoar
= Sla-@y]=3@'-A)
1 /
—-La-m)
-_C

Thus, B is symmetric and C is skew-symmetric.
Further, A=%(A+A’)+%(A—A’)

= B+C

In this way, A has been expressed as a sum of a symmetric matrix and a skew-
symmetric matrix.

Let A=P+Q be another such representation of A,
where P is symmetric and Q is skew-symmetric.
Then we have
A'=P+Q)
— P|+Qv
= P-Q (-~ P=P while Q' = - Q)
So, A+A'= (P+Q) + (P-Q)=2P
p= %(A +A)=B
And A-A'=P+Q)-(P-Q)=2Q
Q=3(A-A)=C
Hence, the representation A=B+C is unique.

Example 18.  Find the transpose of

2 1
O 2 3 -5] i) | | 5
10 -1
1 2 3
(iii) L O 4} i) |-2 3 4

4 5 2
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2
- N ] I A i P
Solution : (1) s (i1) 13 13
, 2 1o -1 [ 1 -
12 3]
(i) {2 . 4}‘ 2! vy |72 3 4= 0
3 4 4 5 2 -1
2 -1 1 2 .
Example 19. 1f A= and B= , verify that
1 3 2 -1
(®) (A')'=A (i) (A+B)Y=A+B
(i) (5A)'=5A" (iv) (ABY=B'A
_ , (A,),_zl’_2—1_A
Solution : 1) =213l Tl o3lT

g2 2] [3 1]
@ A= 5] T

{ ]

w2 T 2] [2 1] 2
and 13 |2 -1 |-t 32 -1
o2+l 142
=142 31
33
12

Hence (A+B)' = A+B'
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!

L [10 =S _[1005]_ 2 1]_J2 -1
() ¢ ){5 15}{—5 15}_ {—1 3}_ L 3}

= 5A".
) AB_2—1 1 2] [2-2 4+1] [0 5
11 3|2 =1 |1+6 2-3| |7 -1
(AB)'{O
5 __

! !

1 2[2 -1 1 2] 2 1
BVAl: —
[2 —1}_1 3} {2 —1“—1 3}
[2-2 1+6] [0 7
14+l 2-3] |5 -1

Hence (AB)' = B'A'.

Example 20. 1If A be a square matrix, prove that AA' and A'A are both
symmetric matrices.

Solution : Let AA'= B and A'A=C

Then B'=(AA')
= (AHA' + (AB) =B'A’
= AA' w (A)=A
=B
B is symmetric

Again, C'= (A'A)'
=A'(A")
=A'A
=C

C is symmetric

Thus, both AA' and A'A are symmetric for any square matrix A.
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Example 21. 1f A and B be symmetric matrices of the same order, show that
AB — BA is a skew-symmetric matrix.

Solution : Let C = AB - BA
Then C'=(AB-BA)'

= (AB) - (BA) - (P-Q) = PQ
= BA' - AB' .+ (PQ) = QP'
- BA - AB .+ A=A B-=B

= —AB + BA

= — (AB-BA)

= C

Hence C is skew symmetric.

EXERCISE 5.3

1. Write the transpose of the following matrix :

2 5
2 3 2 -1 3
. . |3 -4
) { 4 5} (11) A | (1i1) {O | 4}
(iv) b, b, b, ) 6 4
G 12 3
2. Verify that (A+B)' = A'+B', when
1 2 3 1 2! bl
i A= and B= () A=|3 2|and B=| 2 0
4 3 0 2
4 3 1 4
I 11 2 1 -1

@ A=2 1 3|and B=[1 3 2
334 4 -2 0
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3. Verify that (AB) = B'A", when

0 -1 4 >
0 A:L 2 3}’]3:1 ’
6 -2
) ] 1 2]
-1 1
(i) A= B=|{-2 3
L3 -2 30|
) ] 0 1
-1 1 2
(i) A = , B= 1 2
_3 1 _2_ O 3
1 -4
_ 2 3 -1
(i) A=| 1 3, Bz{ }
3 s 10 -2
POR LR U R
W 27 s fTlar 1 2

2 -1 I 0
4. IfA:L 4} a;ndB:{2 3},Ven'fythe’following:

@) (A=A (i) (A+B)=A+B' (i) (2A) =2A' (iv) (AB)=B'A'

5. Express the following matrix as a sum of a symmetric matrix and a skew-symmetric

matrix.
-1 1 -2 3
23
0 L 6} T e I B
-1 2 3 5 0 -1

6. For any square matrix A, prove that both the products AA' and A'A are symmetric.
7. If A and B are symmetric matrices of the same order, show that

(1 A+B is symmetric. (i) A-B is symmetric.

(1) AB+BA is symmetric. (iv) AB-BA is skew-symmetric.
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Show that the matrix ABA' (when A, B are square matrices of the same order) is
symmetric or skew-symmetric according as B is symmetric or skew-symmetric.

If A and B are symmetric matrices of the same order, show that AB is symmetric if
and only if AB=BA.

ANSWER
20
o |24 I Y R IR
O |35 @[5y @[]
a b ¢ 6 1]
i) |2 2 @ (i)

L
1 > 1 0 > 0

2 47 [0 -1 3 +1
0 L 6H1 0} @ | 2 i i ; 0!
- 0O -1 0

—_
+
— Nun o

1
R
@) |2

4




CHAPTER 6

FACTORISATION (Harder Type) AND
IDENTITIES (Conditional and Unconditional)

6.1 Introduction

We have learnt how simple algebraic expressions of types a?>—b% a® + b3,
a’— b, ax* + bx + ¢, etc. are resolved into factors. Here we shall discuss factorisation
of a harder type. But, factorisation of expressions of the forms: a*+b* +¢* - 3abc,
a*(b—c) + b*(c —a) + ¢*(a—b), etc. will not be considered as they are discussed in the
Mathematics (general course) for Class X. We may however use the results.
For occasional reference, the following results are given :

i) a-b*=(a+b)(a->b)

@ a+b=(a+b)(a*—ab+b?

(i) a®—b*=(a—>b)(a®+ab + b?)

(v) X*+(@+gx+pg=x+p)(x+tq)

V) @+b+c-3abc=(a+b+c)(@+b*+c—ab—bc—ca)

M) a*>(b—-c)+b*(c—a)tc*(a-b)
=bc(b—-c)+tca(c—a)+ab(a—b)=—(b—c)(c—a)(a—Db)

(i) a (b*+ )+ b (c*+a®) +c(a®+ b?) + 2abc
=a*(b+tc)+b*(ct+a)+tc*(a+b)+2abc
=bc(b+c)tca(c+a)tab(a+b)+22abc=((b+c)(c+a)(a+b)

(viii) @ (b* + ¢*) + b (¢ + a*) + ¢ (a* + b*) + 3abc
=a*>(b+c)+b*(c+a)+c?(a+b)+3abc
=bc (b +c)+tca(c+a)+ab(a+b)+3abc=(a+b+c)(bc+ ca+ ab)
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x) (@a+tbtce)y-a-b-3=30b+c)(c+a)la+b)
x) 20’ +2la?+2a’h*—a*—b*—c*=(a+b+c)(atb-0)
(b+c—a)(cta-Db)
6.2 Factorisation by Trial

The factor theorem on polynomials states that ‘A polynomial f(x) is exactly
divisible by (x —a) if and only if f(a) =0’. We may, very well, use this theorem in
resolving polynomials into factors. Given a polynomial f(x), we first find by
inspection suitable value or values of x for which f(x) vanishes. If f(x) vanishes
for a value, say a of x then the terms of f(x) may be grouped into parts each of
which is divisible by x —a and the factor x —a be taken common. In this way, we
find a polynomial g(x) of degree one less than that of f(x), such that f(x) = (x — a)
g(x). We next proceed to factorise g(x) by the same process or any other process known
to us. The process is illustrated in the following examples.

Example 1. Factorise x* —7x*+ 14x— 8
Solution :  Let f(x)=x>—7x*+ 14x—8
Then, f(1)=1—-7+14—-8=0 and so x—1 is a factor of f(x).
Now we write, by grouping the terms into parts divisible by x — 1;
and then take out (x — 1) as a factor :
f(x) = xX¥*-x*—6x>+6x+8x—28
= Xa=-D-6xx=1D*r8(x=1)

= =D =6x+8)
= x-D(x-2)(x—4)

(Here x*—6x+ 8 being a quadratic expression, is factorised by the
usual method.)

[ Here, the factorisation can also be effected by grouping the terms
as x* — 8 — (7x* — 14x), (Sec §6.5)]

Example 2. Resolve into factors, x* —4x® + 5x> — 4x + 4.
Solution :  Let f(x) x*—4x* +5x>—4x+4. Then
F() 1-4+5-4+4 %0
f(=1) 1+4+5+4+4 #0
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Remarks :

Example 3.

Solution :
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f(2) = 16-32+20-8+4=0

So, x—2 is a factor; we now group the terms into parts each of
which is divisible by x —2 ; and then take out (x — 2) as a factor.

fx) = x*=2x-2X+4x*+x*—2x—-2x+4
= X x-2)-2x*(x-2)+x(x-2)-2(x—-2)
= x-2)(x¥*-2x*+x-2)
Writing g(x) = x*—2x*+x -2, we find g(2)=0
and so g(x)= X*-2x*+x-2=x*(x—-2)+(x—-2)
= (x=2)(*+1)
Hence, the given expression = (x — 2)* (x* + 1).

(Here the quadratic factor x>+ 1 is not factorisable into real linear
factors.)

(1) If the sum of coefficients in any polynomial f(x) is zero, then
f(1)=0 and hence x—1 is a factor of f(x).

(i) If the sum of coefficients of odd powers of x in f(x) is equal to
the sum of the remaining coefficients, then f(—1) =0 and hence x + 1
is a factor of f(x).

Resolve into factors x*+ 5x3 + 5x> — 5x — 6.

The sum of the coefficients of the polynomial=1+5+5-5-6=0

Hence x—1 is a factor and so grouping the terms into parts each of
which is divisible by x — 1, we have

the given expression = x*—x*+6x>—6x>+ 11x>—11x+ 6x—6
= -+t (x—D+1lx(x-1)+6(x—-1)
= (x-1)(*+6x*+11x+6)

Further, in the polynomial x*+ 6x?+ 11x+ 6, the sum of the
coefficients of odd powers of x is 1+ 11 =12 which is equal to the
sum of the remaining coefficients. Hence x + 1 is a factor. Thus,

X}+6x*+1lx+6 = x*+x*+5x2+5x+6x+6

= Xx+tD)+5xx+1H)+6(x+1)
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(x+1)(@*+5x+6)

(x+1)(x+2)(x+3) (on factorising the quadratic
polynomial by usual method)

the given expression = (x—1) (x + 1) (x +2) (x + 3)

6.3 Factorisation of Reciprocal Expressions

A polynomial of degree » in x is said to be in its complete form if it involves all
powers x” of x for 0<r<n. For example, the polynomial x*—3x*+ x>—5x—2 is in
complete form. The polynomial x* + x> + 5x — 2 is not in its complete form but may be
written in complete form as x* + 0.x* +x* + 5x — 2.

Definition : A complete polynomial is said to be a reciprocal or recurring
expression if the coefficients of the terms equidistant from the
beginning and the end are equal (the terms being in descending or
ascending order of their degrees).

For example, x®—3x°+ 5x*+ x>+ 5x>-3x+ 1 is a reciprocal expression
whereas x° + 3x* + x>+ 3x + 1 is not.

A reciprocal expression of even degree can be factorised by grouping terms with
equal coefficients. The process is illustrated in the following examples.

Example 4. Factorise x*+ 3x> +4x?+3x + 1.

Solution :  The expression is a reciprocal expression of even degree. So, the
given expression = (x*+ 1)+ (3x*+ 3x) + 4x2

= {2+ 1)y -2x"}+3x (x> + 1) +4x2
= (F*+ 1) +3x(*+ 1)+ 2%
= 2+ 3xy + 2x* where y=x?+1
= Y +xy+ 2xy + 2x°
=y )2 +)=@+x) @ +2X)
= (x*+x+1)(*+2x+ 1) (restoring value of y)
= (x+1)P2x+x+1)
Example 5. Factorise 2x*— 5x +4x? — 5x + 2.

Solution :  The given expression = (2x*+2)—(5x + 5x) + 4x?

2(x*+ 1) = 5x (x2 + 1) + 4x?
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= 2{(x*+ 1) =2x*} = Sx (x* + 1) + 4x?
= 2(x*+ 1) -5x(x*+1)
= (2+1){2*+1)-5x}
= (®+1)2x*-5x+2)
= P+ 2x*—4x—x+2)
= @+ {2x(x-2)—(x-2)}
= (P+D)E-2)2x-1)

A reciprocal expression of odd degree in x has in general (x + 1) as
a factor (for, the expression vanishes when x=-1). Dividing the
expression by x + 1, we obtain a quotient which is a reciprocal
expression of even degree, and which may be factorised by grouping
terms with equal coefficients.

Example 6. Factorise 2x° + 3x*— 5x* — 5x% + 3x + 2.
Solution :  The expression vanishes when x =—1 and so x + 1 is a factor.

Given expression = 2x3+2x* +x*+x3 —6x3 —6x> +x* +x +2x + 2

= (x+D@x*+x—6x*+x+2)
= (x+1)2x*+2+x3+x—6x?)
= (x+D {2+ 1) +x(2+1)—6x2}
= x+D){2CE*+1)+x@2+1)—10x%}
Now, 2 (x*+ 1)*+x (x> +1)—10x*> =2)? + xy — 10x?, where y=x*+1
= 2y2+ S5xy —4xy — 10x?
=y 2y +5x)—2x (2y + 5x)
(y—2x) (2y + 5x)
= (x> —2x+ 1) (2x? + 5x + 2) (restoring the value of y)

= (x—-1P2x*+4x+x+2)
= (k=12 Q2x+ 1) (x+2)
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Hence, the given expression=(x + 1) (x — 1> 2x + 1) (x + 2).

6.4 Factorisation of a polynomial expression in which the
coefficients of the terms equidistant from the beginning and end
are equal in magnitude but opposite in sign

If such an expression in x is of odd degree, the sum of coefficients will be
zero and hence it has x—1 as a factor. Division by x—1 gives as quotient a
reciprocal expression of even degree and this can be factorised by using the method
discussed already. And if the degree of the expression is even, say 2m, then the
coefficient of x” is zero and so as can be seen both x—1 and x + 1 are its factors.
Division by x* — 1 will give as quotient a reciprocal expression of even degree, which
can further be factorised.

Example 7. Resolve into factors with integral coefficients x° —5x* +9x* —9x% +5x -1
Solution :  As the sum of the coefficients is zero, x — 1 is a factor of the expression.
On division by x — 1 we see that, the expression
= (x-D@E*"—4x*+5x2—-4x+ 1)

Further, x*—4x* +5x* —4x+ 1 =(x*+2x* + 1) —4x (x* + 1) + 3x?

2+ 1) -4+ 1) x + 3x?
= y*—4yx+3x% where y=x*+1
= 0-00-3
= (¥*—-x+1)(x*-3x+1)
the given expression=(x—1) (x> —x+ 1) (x> —-3x+ 1)

Note : In this section, we are concerned with factors involving integral
coefficients only and so the quadratic factor x> —3x + 1 is left as it is,

although it can further be factorised as (x— 3+2\/§] (x— 3—2\/§ ] _

Example 8. Factorise 2x®—3x° —3x*+3x? +3x -2

Solution : 1t is evident that both x — 1 and x + 1 are factors of the given expression.
Division by x> — 1 gives 2x*— 3x* —x?> — 3x + 2 as quotient. Also
2% =-3x -x*=3x+2=2 xX*+1)-3(x*+x)—x*

= 2(x*+ 1) =3x (x*+1)— 5x?
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= 292 —3yx—5x%, where y=x*+1
= 2)?—5yx + 2yx — 5x?
(2y=5x) (y +x)
2x?=5x+2)(x*+x+1)

= (2 —4x—-x+t2)(x*+tx+1)

x=2)2x—-1) x*+x+1)

The given expression=(x+1)(x—1)(x-2)2x—1) (> +x+ 1)
6.5 Factorisation by suitable arrangement and grouping of terms

Some algebraic expressions may be resolved into factors by suitable arrangement
of the terms. However, there is no specific rule to be followed while arranging the terms ;
unless a factor is predetermined, and the method is handy only in certain cases. The
following examples will make the process clear.

Example 9. Factorise a*> + ab — bc — .
Solution :  a*+ab—bc—c* = (a*—c*)+ (ab-bc)
= (atc)(a—c)+tb(a—c)
= (a-c)(a+b+c)
Example 10. Factorise (p* + ¢°) xy + pq (x> +)?).
Solution :  The expression = p*xy + g*xy + pgx* + pg)?
= (Pxy +pgx®) + (pgy* + ¢’xy)
= px(py +gx)+qy (py +gx)
= (px+qy) (py +qx)
= (px +qy)(gx +py)
Example 11. Factorise x*—ab® + b’x — ax’.
Solution :  The expression = (x*+ bx)— (ax® + ab?)
= x(@+b)—a(XP*+b)
= &) -a)
= (x+b)(?*—bxthb*)(x—a)
= (x—a)(x+b)(x*—bx+b?
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Example 12. Factorise @ —7a* —2la + 27.

(a®*+27)— (7@ +21a)
(@+3)-Ta(a+3)
(a+3)(@-3a+9)-Ta(a+3)
(a+3)(@-3a+9-"7a)
(a+3)(@—-10a+9)
(a+3)(a-1)(@-9)

Solution :  The expression

Example 13. Factorise x*+ 2x*y —2x)° —y*~.
Sloution :  The expression = (x*—)%)+ (2x°y —2x)?)
O +y%) (% =) + 2xy (6 =)
(% =) (% + 2xy +?)
(x=y) (x+y) (x+yp)
= (x=y)(xtyy
Example 14. Factorise (a + b +¢) (bc + ca + ab) — abc.

Solution :  The expression = {a+(b+c)} {a(b+c)+bc}—abc

= a¥(b+c)+tabc+a(b+c)y+bc(b+c)—abe

= a*(b+tc)+ta b +c)}+bc(b+c)
(arranging in descending powers of a)

= (btce)la*+ta(b+c)+bc]
= (b+to) [(@>+tac)+(atc)b]
= (b+co)la(c+a)+b(c+ta)
= (btc)(cta)(a+b)
6.6 Factorisation of expressions of second degree in two variables
The process is illustrated in the following examples :
Example 15. Factorise x>+ xy—2y*+x+ 5y—2.
Solution :  Arranging in descending powers of one of the letters say x, we have
XHxy—-2+x+5y-2 = X*+x(y+1)—(2*-5y+2)
= ¥Hxp+tD-Q-1)(r-2)
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Example 16.

Solution :

Higher Mathematics for Class — X

This can be treated as quadratic in x. So, following the usual method,
we can factorise it. Here we split the coefficient in the middle term.
Hence, the given expression

= ZHx{@-D-0-2}-@-D -2
= Xtx@-D-x(r-2)-&-Dr-2)
X(x+2y-D-(@-2)(x+2y-1)

= @+2y-DEx-y+2)

Factorise 4x? —4xy +y*— 6x + 3.

Arranging in descending powers of x, we find that the expression
= 4-2x(2y+3)+y(+3)

We now split 4y (y + 3) into two factors viz, — 2y and — 2 (y + 3), whose
sum is the coefficient of the middle term. Hence, the expression

= 42— {2p+2(p+3)}x+ty(y+3)

= 4 -2yx-2(@+3)x+ty(y+3)

= 2x(2x-y)-@+3)(2x-y)

= (2x-y)(2x-y-3)

[ Factorisation can also be effected as follows :

Given expression = (4x? —4xy +1?) — (6x — 3y)
= 2x-yP-3(2x-y)
= (2x-y) 2x—y—3)]

6.7 Factorisation of homogeneous expressions of second degree

We may proceed as in the previous article, by arranging in descending (or

ascending) powers of one of the letters involved. See the following examples.

Example 17.

Solution :

Factorise x> + 3xy + 2y* + xz + 2yz.

The expression = x*+x 3y +z)+2)*+2yz
(on arranging in descending powers of x)
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= X+x{2y+(@y+2)}+2y(y+2)
[splitting the coefficient of x in the middle term
into two parts whose product is equal to 2y (y + z)]

= (P+20) +{x(y+2)+2 (v +2)}
= x(x+2)+(y+z)(x+2)
= x+2y)(x+ty+2z2)
Example 18. Factorise a* + 2b* — 2¢* + 3ab + 3bc + ca.
Solution :  The given expression = a’>+a (3b+c)+ (2b*+3bc—2c?%)
= a*+a(Bb+c)+ (2b*+4bc—bc—2c%)
= a?+a@Bb+c)+(b+2)(2b—c)
= a+a{b+2c)+2b-c)} +(b+2c)(2b—-c)
= a(@a+tb+2c)+(2b—-c)(a+b+2c)
= (a+b+2c)(a+2b-c)
Miscellaneous Examples
Example 19. Resolve into two quadratic factors x*—4x* —x? + 10x + 4.
Solution :  The expression = (x*—4x>+4x?) —5x*+ 10x +4

(x* —2x)* —5(x>—2x) + 4

y? — 5y +4 (writing y for x? — 2x)

-4 -1
(x*—2x—4) (x*—2x—1) (restoring the value of y)

Example 20. Resolve into factors x* — 5x’y + 6x%? — 5x)° + )~

Solution :  The expression = (x*+y*) —5xy (x? +)?) + 6x%)?
= (x*+)%)* = Sxy (x2 +)?) + 4xH?
= u’—Suv+ 4’ where u =x*+)% v=xy
= w—4uv—uv+4?

= u(u—4v)—vu-4v)
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(u—4v) (u—v)
(> +y* —4xy) (x* + > —xp)
(% —4xy +)?) (x* —xy H°)

Example 21. Resolve into two quadratic factors x* - 7x*y + 14x%)? — 14xy°® + 4*,

Solution :

The expression

Example 22. Factorise 8x* + 8x?

Solution :

The expression

(x* + 4yh) — Ty — 14x)® + 14x%7?
(2 + 4x%y?* + 4y —Txy (x* + 2)%) + 10xH?
(2 + 2% — Txy (x* + 2)2) +10x%?
u*—Tuv + 101,  where u=x*+2y* and v =xy
u* —2uv — Suv + 10v?
(u—2v) (u—>5v)
(* +2)% = 2xy) (x* + 2)* — 5xp)
(x* = 2xy +2)7) (x* = Sxy + 2%

- 3.
(2x)* +2 (2x)*-3
Vv +2y* -3, where y=2x
0=+ 2*-2)
G-DH*+y+DH+2@HE-DH@+1)
-1 0*+3y+3)
(2x— 1) (4x* + 6x + 3)

Example 23. Resolve into two quadratic factors (x — 1) (x —2) (x +3) (x + 4) + 4.

Solution :

The expression

GE-DE-2)(x+3)(x+4)+4
{x=1D (x+3)} {xr=2) (x+4)} +4
P+2x-3)(x*+2x-8)+4
y-3)(y—8)+4, where y=x>+2x
32— 11y +28

0v-7N0-4

@2 +2x—T7)(x*+2x—4)
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Note : In multiplying together the four binomials x—1, x— 2,
x+3, x+4, we combine x—1 with x+3 and x—-2 with
x +4, so that in the resulting products the terms containing
x* and x may remain the same.

Example 24. Factorise x* ()? —z?) + 4xyz —y* + 2%

Solution :  The expression = x?y*—x%*z*>+4xyz —y*+ 22

(xH? + 2xyz + z%) — (¥%2* — 2xyz )?)

(y +2)* = (xz —p)?

= (xytztxz—-y)(xy tz—xz+y)

@t -yrzpix(y-2)+y+z;

EXERCISE 6.1

Resolve into factors :

. ¥*-2x*-5x+6 2. x*+2x2-5x-6 3. X¥*+4x*-2x-20
4, X¥*+x*-5x+3 5. ¥+3x2+4x+2 6. 6x°—11x*+6x—1
7. xX*-5x*-2x+4 8. xX*—6x2+3x+10 9. X¥*+2x2—-4x+1
10. x¥*—2x*+x-2 11. x*-6x+4 12. x¥*-3x*+4

13. x*—7x*+36 14. x*—3x>—6x+8 15. 8x*+8x*—1

16. 8x*+24x-13 17. 27x*—9x+2 18. 27x3+3x-10

19. x*=2x3-3x2—-2x+1 20. x*-5x—-12x>—-5x+1 21. x*—6x*+8x-3

22, x*—10x*+26x*—10x + 1 23, x*=3x*+4x*-3x+3

24, x*—Tx*+ 10x* —35x + 25 25, x*—6x+12x2 - 2x - 21

26, x*+4x*—13x° - 13x2+4x+ 1 27. 2x°=Tx*—xP—-x*—"Tx+2

28, 2x° — 15x*+37x% = 37x* + 15x - 2 29. x*—6x*+15x7—18x+5

30. 6a*+7ab+2b*+1la+7b+3 31. a*—4b* -9+ 12bc +4a—8b + 12c¢

32. XXy -22-2yz+x—-y-—z
33, 9x*—4y?—24zx + 162> — 15x + 10y + 20z
34, 6x*+ Txy +2y? + 1lxz + Tyz + 322 35. a®>—3ab +2b*—2bc —4c?
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36. 2x*+ 5yz +zx — 10xy — 22 37. x*—2xy+y*—5x+5y

38. 4x?2—4xy +y*—6x + 3y 39. 4x2—12xp+ 9> +2x -3y -2
40. x¥*-3x2y-1)+4y(2y-3) 41. x*—2x% + 2x%? - 2xp* + y*
42. (@®+b*) x*—a*b 2a+b)+a (2bx*—a?)

43. 2x*+3b)a— 2a*+3x%) b 44. a*—b’c + a’b* — b*c?

45. @’ —T7a*b + 14ab* - 8b° 46. @+ 64’ —24a— 64

47. 3x3—(5a+3b)x2+ (3a+5ab) x— 5a* 48. x*+4xy+ 10x%2 + 4x)® +
49. x*—5x%y + 6x%* — 5xy° + p* 50. a*b*+a*bh* - +2abc + 1
51, @@ (b—-c)+b(c—a)+c(a—Db)
52. () (+D)(E+2)(x-3)(x—-4)+6

G) (—1)(x-2)(x+4)(x+5)+8

(i) (r—1)(x—3)(x+4)(x+6)+13

@) (+1D)Ex+2)x+3)x+4)-3

v) x(x-2)QRx+1)(2x-3)-63

53. 2x3—xy—)y? 54. x*—6xy*+9y°
55. x>+ bx —(a*—3ab +2b% 56. x*+2xy—5zx —4yz + 62?
57. a*x*—b*»*— bcyz + cazx 58. (@*+b*) (x> —y*) +2ab (x* +)?)

59. Find the value of x* —x*+x*+2, when x> +2 =2x

60. Find the value of xy (x +y) +yz (y+2z)+zx (z + x) + 3xyz, when x=a (b-c),
y=b(c—a), z=c(a-D>).

ANSWER
. x-DHEx+2)x-3) 2. x+DH(x-2)(x+3) 3. (x-2)*+6x+10)
4. (x—-1yx+3) 5. (x+1)*+2x+2) 6. (x—1)(2
7. (x+1)@E>—6x+4) 8. (x+hH(x-2)x=5 9. (x-D(x
10. (x=2)(x*+1) 1. x-2)(x*+2x-2) 12. (x+1)(x—2)

13 x+2)(x-3)(x—-6) 14 x-1)(x+2)(x—4) 15 (x+1)(@x*+2x-1)



16.
19.
22.
24,
26.
28.
30.
32.
34,
36.
38.
40.
42.
44,
46.
48,
50.
52.

53.
55.
57.
38.
59.
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(2x — 1) (4x> + 2x + 13)
(2—x+1)
?—4x+1)(x>*—6x+1)
(2 +5) (x2— Tx +5)
(x+1)(2=3x+1) (2 +6x+1)
=1 (x=2)2x—1) (x> —4x+1)
(2a +b+3)(Ba +2b+1)
(x—y-2)(x+y+z+1)

(2x +y+32) Bx + 2y +2)
(2x—z) (x— 5y +2)

(2x—y) (2x-y-3)
(x—4y) (x -2y +3)

(a+b) (x—a)(x+a)

(a® = bc) (@ + be + b?)
(a+2)(a—4)(a+8)

(x—y)* (x* + bxy +)?)

(@b +ab—c+1) (@b —ab+c+1)
) (2—2x-5)(x2-2x-6)
(i) (2+3x—5)(2+3x—17)
V) (x=3)(Q2x+3)(2x2-3x+7)
(x=y) 2x* +xy +)?)

(x+a—b) (x—a+2b)

(ax — by) (ax + by + cz)

a+b)x+(a=b)y; i(a+b)x—(a—b)y;

0.

17. Bx— 1) Gx+2)
20. (x+ 1)y (x*—Tx+1)

23.
25.
27.
29.
31.
33.
35.
37.
39.
41.
43.
45.
47.

60.
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18. (3x —2) (9x% + 6x + 5)
21. (x— 1) (x + 3)
(> + 1) (3 = 3x +3)
x+1)(x=3)(2—4x+7)
x+1D)E2—4x+1)(2x*—x+2)
P=3x+1)(x*-3x+5)
(a—2b+3c)(a+2b-3c+4)
(3x—2y—4z) B3x +2y—4z—5)
(a—b +2c)(a—2b-2¢)
(x-y)(x-y-3)
2x-3y—-1)(2x—-3y+2)
(xr—p)* (* + %)
(2a —3b) (x* — ab)
(a—b) (a—2b) (a—4b)
(3x - 5a) (x* — bx + a)

(> =xy +y?) (x> —4xy +)?)

. —(b=¢c)(c—a)(a—b)(a+b+c)

(x*=3x—-6)(x* +3x—28)

2 +5x+3)(2+5x+7)

(x +3p) (x* = 3xy + 3)?)
(x+2y—32) (x—22)

0
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6.8 Identities

We are already familiar with simple algebraic and trigonometric identities. In fact,
an algebraic identity is a statement that two algebraic expressions are equal for all values of
the letters or variables involved. For example, a®> — b* = (a + b) (a — b) is an identity, for
the statement is true for all values of @ and b ; whereas 2x +3 =3x—1 is simply an
equation but not an identity ; for it holds only when x = 4.

To prove an identity, we are to establish the equality of its two sides. The following
procedures may be noted for proving an identity :

(1) Reduce one of the sides (preferably, the more complex side) to the form
of the other by simplification using known formulae.

() If both sides are complex, reduce each side to its simplest form and
establish their equality.

(i) Sometimes an identity follows easily by transposition of terms or addition
of terms to both sides.

(iv) Sometimes an identity becomes trivial when new letter(s) are substituted
for a group of letters occuring in the identity. Make such substitutions
whenever necessary.

The following examples will illustrate the process :

Example 25. Show that (x —al? (b—c)+(x—b)Y(c—a)+ (x—c)*(a—Db)
=—(b—-c)(c—a)(a—-Db)

Solution : Putting x—a=p, x—b=¢q and x—c=r, we have
qg-r=x—-b)—-(x—c)=—(b-0)
r-p=(-0-(-a)=-(c-a)

and p—g= (x—a)—(x—b)=—(a-D>)
LHS. = —[p’(g-n)+¢ (r—p)+r (p—q)]
= (q-nNr-pp-9 (Result VI of § 2.1)
= 1Y ®-0(c-a)la-b)
= —(b-c¢)(c—a)(a—b)=R.H.S.

Example 26. Prove that 27 (x + y +z)’ — (x + 2y)* — (y + 22)* — (z + 2x)?
= 3(x+3y+22)(2x+y+32) Bx+ 2y +2)



Solution :

Example 27.

Solution :

Example 28.
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Putting x + 2y =a, y+2z=5 and z + 2x = ¢ we have
atb+c=3x+3y+3z=3(x+y+2)

Now (a+tbtcey-a-b-c=30B+c)(c+a)(atb)
27x +y + 2P = (x + 2y — (y + 22)* — (z + 2x)*

= {0+ 2+ + 20} {E+ 20 T (x+2)} {(x+2y) + (v + 22)}

= 32x+y+3z)Bx+2y+2z)(x+3y+2z2)

= 3x+3y+2z)(2x+y+3z) Bx+2y+2z)

Prove that (x +y+2z) (x + 2y +2) 2x+y+z2)—(y +2) (z+x) (x + )
=2(x+y+z)+2xyz

We have

(a@a+tbtceyP=a+b++3(b+c)(cta)(@tb)....... (1)
= 3bto)(cta)(atb)—(a+tb+c)P=—(@+b+) ... )
Leta=y+z b=z+x and ¢ =x +y. Then

b+c=2x+y+z,cta=x+2y+z,at+b=x+ty+2zanda+b+c
=2x+y+2z).

(2) becomes 32x+y+z)(x +2y+tz) (x +y+2z)—8(x +y+z)}
= [0 R )]
= —REHY D)3zt @+ x) Hay ()}
= 2@ +y +2)-3{z(y t2)tzx(z +x) +xy (x +y)+ 2z} + 6xpz
= 2+ +2)-3(y+2)(z+x) (x+y)+6xyz  (Result VII of § 6.1)

= —2[(x+y+z)3 3(y+2)z+x)(x+y)]-3(y+2)(z+x)(x+y)+6xyz
[by using (1)]

—2x+y+tzP+3(ptz)(z+x)(x+y) +6xyZ
By transposition,

3ty +2)(x+2y+tz7) 2xty+tz) -3 t2)(tx)(x+y) =
6(x+y+z)+o6xyz

Dividing both sides by 3, we get the desired identity.

Prove that (@ +b+c)(x +y+2)+(@a+b-c)(x +ty—2z)+
btc—a)(y+tz—x)+(c+ta-b)(z+x—y)=4(ax + by + cz)
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Solution : Let b+c—a=1I1,cta—-b=mand a + b—c=n Then,
m+n=2a n+[l=2b, [+tm=2cand [+tm+n=a+b+c

- LHS. = ((+m+n)x+y+z2)+n(x+y—-z)+l(y+z—x)+m(z+x-y)

= 2m+n)x+2m+Hy+2(+m)z
=  4dax+4by +4cz=4 (ax + by + cz) =R.H.S.
Example 29. Prove that (y —z) (1 +xy) (1 +xz) +Hz—x) (1 +yz) (1 +yx) +
=)L +zx) (1 +20)=(—2) (z—x) (x—))
Solution : L.H.S.
= 0290+ Dez+ DA +y2) [E-x) 1 +xp)+(x-y) (1 +2x)]
= -a)yztx(to+t11+(A 4ty [ (-2)—{y—2z}]

(arranging in descending powers of x)
V—2)[Pyz+x(y +tz2)+1—(1 +yz) >+ 1)]
= -9[-¥+x(+z) -y
v—2) [(zx =) = (z— )]
= -2 xE-x)-y(E-x)]
= (-2)(z—x)(x—y)=RH.S.

6.9 Conditional Identities

z

Let us consider the relation
(a@atb+cey-ad-b-c=3(@+b)(b+c)(cta).

This relation is true for all values of @, b, ¢ and therefore it is an identity. If
we impose a condition on a, b, ¢ say, a + b + ¢ =0, then the above relation becomes

—a*-b-c=3@+b)(btc)(cta)
ie. ad+b+cc=-3(a+b)b+c)(c+a).

Thus, the relation &’ + b*+c*=-3(a + b) (b + ¢) (¢ + a) holds only when
a+b+c=0. Such relations which hold under some condition(s) imposed on the symbols
(variables) involved, are called conditional identities. We shall now establish some
conditional identities.
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6.10 If a + b + ¢ =0, then
i) a+tb+c*=-2(ab+ bc+ ca)
i) & +b+c=3abc
(iif)
()

To establish the conditional identity (i), we have

(atb+ceyP=a+b*+c*+2(ab+ bc + ca)
I 0=a+b*+c*+2(ab +bc + ca) [[a+b+c=0]
0l @+ b+ *=-2(ab + bc + ca)

To establish (ii), we have

0 @+bP+cE=3abc [ latb+tc=0]
[ Alternatively, we can also establish as follows :
atb+c=0

at+tb=-c

(a +b)y=(-c)
a+b+3ab(a+b)=-¢
a+b*+3ab(—c)=-¢

a+ b+ =3abc |

To prove (iii), we have

(ab + bc + ca)® = a’b* + b*’c*+ ?a* + 2abc (a + b + ¢) = a*b* + b*c* + ¢*a?
[[la+tb+c=0]

Also, —2 (ab + bc + ca)=a* + b*+ 2 [ from (i) ]
[
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Hence,

To prove (iv), we have

=0 [[latb+c=0]
[ a*+ b+ ¢t = 2a*h* + 2b%c* + 2202

= 2 (a*h* + b*c* + c*a?)

= ‘ ‘ [from (iii)]

Example 30. 1f a + b + c=0, prove that

Hence,

(bt+tc—aP+(ct+ta-byl+(a+b-c)
=3b+c—a)(cta—->b)(a+b—c)=-24abc.

Solution : Puttingp=b+c—a,g=c+a—band r=a+b—c, we get
ptgqtr=a+b+c=0

Hence, p* + ¢* + r* =3pqr

ie. (b+tc-al+t(c+ta-bP+(@+b-c)

=3b+tc—a)(cta—-b)(a+b-c)

Further, b+c—a=a+b+c—-2a=-2a
cta-b=a+b+c-2b=-2b
andatb—-c=a+b+c—2c=-2c, so that
(b+c—a)(cta—-b)(a+b—c)=-8abc

Thus we have,
btc—ay+(c+ta-bPl+t(@+b-c)
=3b+tc—a)(cta—-b)(a+b-c)=-24abc

Example 31. 1f a + b + ¢ =0, prove that

b*+bc+c*=c?+ca+a*=a*+ab+ b*=—(bc + ca + ab).



Solution :

Example 32.

Solution :

Example 33.

Solution :
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b>+bc+c*= (b+c)P-bc
= (b+c)(b+c)—bc
= —a(b+c)-bc (b+tc=-a)
= —ab—ca—-bc
= —(bc + ca + ab)
Similarly, ¢ +ca+a*=(c+a)y—-ca=-b(c+a)—-ca
=—(bc + ca + ab)
and a?+tab+b*=(a+bl—-ab=—-c(a+b)—ab
=—(bc + ca + ab)
[ bPPtbct+tcd=c+ca+a*=a*+ab+b*=—(bc+ ca+ ab)
If a+b+c=0, prove that
bc—a*=ca—-b*=ab—c*=bc + ca + ab.
bc—a*=bct+a(-a)=bc+ab+c) (|b+c=-a)
=bc+ca+ab;
ca—b*=ca+b(-b)=ca+b(c+a)=bc+ca+ab,
ab—c*=ab +c(-c)=ab + c(a+ b)=bc + ca + ab
[l bc—a*=ca—-b*=ab—c*=bc+ca+ab
If a+b+c=0, prove that
brePt(tay+(a+byl=3(0b+c)(c+a)la+b)=-3abc.
Putting b+c=p,c+a=qg and a + b =1, we get
ptgqt+tr=2(a+b+c)=0
PPt +r=3pgr
ie. (b+c)P+(ct+ay+@+byl=3b+c)(cta)(a+b)
Also, since a +b+c¢c=0,b+c=-a,cta=—band a+b=-c
[l 3(b+c)(cta)(@a+b)=3(—a)(=b)(-c)=-3abc
Thus, (bt ¢+ (cta)y+(@+by=3(b+c)(c+a)la+b)=-3abc.
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Example 34.

Solution :

Example 35.

Solution :
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If a+b+c=0, prove that

(a +2b+3c)+Qa+3b+c)+Ba+b+2)
=3 (b +2c)(a+2b)(c+2a).

Let a+2b+3c=p, 2a+3b+c=q and 3a+b+2c=r
Thenp +g+r=6(a@+b+c)=0
L p gt =3pgr
ie. (a+2b+3c)P+Q2a+3b+c)+Ba+b+2c)
= 3(a+2b+3c)Ra+3b+c)(Ba+b+2c)
= 3(atb+c+tb+2c)(at+tb+cta+2b)y(a+b+c+c+2a)
3(b+2c)(a+2b)(c+2a)

Prove that 2(s—a) (s—b)(s—c)ta(s—b)(s—c)+b(s—c)(s—a)
t+tc(s—a)(s—b)=abc, if 2s=a+b+c

We have
2(s—a)(s—b)(s—c)=2[s*—s*(a+ b +c)+s(bc+ca+ ab)—abc]
=2[s*—5?.2s +5(bc + ca + ab) — abc]
= 283+ 2s (bc +ca+ab)—2abc............cccccuevieenin.. @)
Also, a(s—b)(s—c)+b(s—c)(s—a)+tc(s—a)(s—Db)
=al[s’—(b+c)stbc]tb[s*—(ct+a)stca]l+c[s*—(a+b)s+ab]
=s(@a+b+c)y-sla(b+c)+b(c+a)+c(a+b)]+3abc
= 25> =25 (bc +ca+ab)+3abc .........ccceoveviiieieieea (i1)
Adding (i) and (ii), we obtain

EXERCISE 6.2

Prove that (1 —15)

L -2+ +@x-p=30-2(-x) (Kx-y)

2. (btrc—ay+(cta->by+(a+b-c)+24abc
=QRa+b-cyP+b+cy—(atb-c)P—6a(a+b)(a—2c)

3. axtbytcz=(a@tbte)y(x+y+z)if x=a*—bc, y=b'—ca, z=c*—ab.



10.
I1.

12.
13.
14.

15.

Factorisation and Identities 137

X+y +2-3xyz=(a® + b*+ - 3abc)? if x=a*>—bc, y=5b*>-ca, z=c*—ab.

ax+by+cz=(x+y+z)(a+b+c),
if @>=x*—yz, > =)*—zx and *=2z>—xy

ss—a)s—b)+s(s—c)s—a)ts(sta)(s—c)tc(s+a)(s+b)
=(sta)(s+tb)(st+tc), ifs=a+b+tc

s—ay+@E->bFtG-—cf-3@G-a)(s—b)(s—c)

= ,if2s=a+b+c

@A b-c)P+b(c—a)P+(a-by=3abc(b—c)(c—a)(a—>b)
(=9 (6 + 3= 22D+ (r=2) 02200+ (-2) (6 X2 =0
(s—ay+(s—-byP+(—cP=s-3abc,if 2s=a+b+c

2a(b+c—a)+t(cta-b)(a+b—c)
=2b(ct+ta-b)t(a@a+b-c)(b+c—a)
=2c(a+b-c)+(b+c—a)(ct+ta-D>b)
=(ct+ta-b)y(at+tb-c)+t(a+b-c)y(b+c—-a)+(b+tc—a)(ct+a-D>b)

alb—cP+b(c—aP+c(a-bP=(b-c)(c—a)(a-b)(a+b+c)
(@40 +&) 7+ g+ %)~ (ap + bg + cr = (ag — bp) + (br— cq)* + (cp — ary

x(-2)A+xy)(1 +zx)+y(z—x)(1+yz) (1 +x)
tzx-p) (1 +z) (1 +zp)=xpz(y—2) (z—x) (x-y)

b-—c)(1 +a*) (1 +d%)+(c—a)(l +b)(1 +ba)+(a—>b)(1 + %) (1 +cb)

=—abc(a+b+c)(b—c)(c—a)(a—D)

16.

17.

18.

19.

20.

Ifx+y+z=a, yz+zx +xy=>b and xyz = ¢, prove that
@ —-3ab+3c=x*+)y’+ 27

If 2s=a+b +c and 22 =a’ + b* + ¢, show that
E-AE-P)+E-PH)(P-AD+EP-AHE-a*)=4s(s—a)(s—b)(s—¢)

If s=a+ b+ c, prove that
(s=3ay+E-3bP+t(s-3cy=3{a-bl+t(b-cP+t(c—a)}

If a+b+c=1, prove that
(a+be)y(btc)y=(b+ca)(cta)y=(c+ab)y(a+b)y=(1-a)(1-b)(1-0)

Ifs=a+b+c, show that (s—a)(s—b)(s—c)=(a+ b + ) (bc + ca + ab) — abc
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21.
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If a + b+ c=0, prove that
1) a(@+b)y(atc)=bb+c)y(b+a)=c(c+a)(c+b)=abc
(i) @ b+e)y+b(cta)+ct(a+b)=3(b+c)(cta)(a+b)

(i) ab—cP+b(c—a)P+tc(@-b>’=0

(v)

V)
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CHAPTER 7
TRIGONOMETRY

7.1 Introduction

You are already familiar with the trigonometric ratios of an acute angle. The
definitions of the trigonometric ratios were given with reference to a right triangle. But in
Trigonometry, you know that angles can be of any sign i.e. positive or negative and of
any magnitude. Indeed, we can talk about angles like — 45°, 390°, —215°, 7200°, 980°
etc. When it comes to the definitions of trigonometric ratios of angles like these, it is not
that simple as the ones for an acute angle as given in the previous class. In this chapter,
we shall give general definitions of trigonometric ratios of angles of any sign and magnitude.
We shall then discuss associated or allied angles and their trigonometric ratios.

7.2 Trigonometric ratios of angles of any sign and magnitude

Let a revolving line OL start from the initial position OX and trace out
an angle [|. The revolution is anti-clockwise or clockwise according as [
+ve or —ve. Also, the final position of the revolving line can be anywhere around O in
the plane of the rectangular cartesian coordinate system according to the magnitude of []
(Fig. 7.1)

Y L

P y) P )
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Y Y
L] []
X Y X X o X
) P(x )
L Y Y L
Fig. 7.1

Let us take any point P (x, y) other than the origin on the final position of the
revolving line OL and let OP=r (>0). Then the trigonometric ratios of the
angle [ are defined as

and

If x=0, then tan[] and sec | are not defined and if y =0, then cot | and cosec |
are not defined.

Here, r is always positive but x and y can be positive, negative or zero according
to the final position of the revolving line OL. Also, we say that the angle [ lies in the
Ist quadrant, 2nd quadrant, 3rd quadrant, 4th quadrant according as the final position of
the revolving line is in the Ist quadrant, 2nd quadrant, 3rd quadrant, 4th quadrant
respectively. Further, you see for yourself that these general definitions of trigonometric
ratios of [] agree with the definitions given in previous class when [ is acute.

7.3 Signs of Trigonometric ratios

In the previous section, we have defined the trigonometric ratios of an angle [ As
you see, each of the trigonometric ratios of ['] is a ratio of two of 7 x and y. Since r is
always positive, the sign of a trigonometric ratio (whether +ve
or —ve) depends upon the signs of the coordinates x and y of the point P, which in turn
depend upon the quadrant in which [ lies. Let us now check the signs of the trigonometric
ratios of an angle ] when [ lies in different quadrants.
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@) It x>0,y>0,r>0.

[ all the trigonometric ratios of | | are positive.
(i) If [] lies in the 2nd quadrant, then x <0, y>0, > 0.

"l only sin[ "] are positive and others negative.
(iit) It x<0,y<0,r>0.

1 only tan [] and cot['] are positive and others negative.
(iv) If [] lies in the 4th quadrant, then x>0, y <0, » > 0.

[ only cos| | and sec| |

The results can be easily remembered by the quadrant rule : “all, sin, tan, cos” (see
Fig. 7.2)

Y
II |
all +ve
Others — ve
X o X
Others —ve Others —ve
11T v
Y
Fig. 7.2

7.4 Allied (or Associated) Angles

Two angles are said to be allied to (or associated with) each other if their sum or
difference is a multiple of 90°

Thus, the angles —[7, 90° [1[7, 180° [1[, 270° 1[0, 360° 117, etc. are angles
allied to [| (measured in degrees). In general, any angle of the form » x 90° [1[1], nZ,
is allied to (associated with) [. In this chapter, we shall find the trigonometric ratios of
angles allied to [ in terms of those of ['.

7.5 Trigonometric ratios of () in terms of those of !

Let a revolving line OA starting from the initial position OX trace out an acute
angle [ in the anti-clockwise sense. Let there be another revolving line OA’ which starts
from the initial position OX and traces out angle — '] in the clockwise sense.
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Let P (x,y) be any point on OA such that OP=r. We draw PMI
produce it to meet OA’ at P".

Then, the coordinates of P’ are (x,—y) and OP'=r
N

- M),

Fig. 7.3

and

Examples :

7.6 Trigonometric ratios of (90°- ) in terms of those of [

Let a revolving line OA starting from the initial position OX trace out an acute
angle ['l. Let another revolving line OA' starting from the initial position OX first trace
out an angle 90° and then revolves backwards through an angle [

position of the line, [} '=90° [
Y A
X1.

SO

Let P (x, y) and P’ (x', y") be two points
on OA and OA’ respectively such that
OP=0P'=r. We draw PM I OX and
PM'I1OX. Then, clearly triangle OPM and
P'OM’ are congruent.

I x'=yand y'=x (]
same sign)
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and

Examples :

7.7 Trigonometric ratios of (90°+") in terms of those of [

Let a revolving line OA starting from the initial position OX trace out an acute
angle [. Let another line OA' starting from the initial position OX first trace out an angle
90° and further revolve through an angle [ in the anti-clockwise direction so that in the
final position of the line, [ '=90°+[

Let P(x, y) and P'(x’, ) be two points
on OA and OA' respectively such that
OP=0P'=r. We draw PM[10OX and
PM'[ OX.

Now, in the right triangles OPM and
OP'M’, [ PMO =1PM'O =90°, [1POM =
[FIOP'M’ and OP = OP".

7 [1OPM = [ P'OM!

So, we have

Fig. 7.5

] x'=—y (] x"and y have opposite signs)

and y'=x ([ x and y' have the same sign)

Now,
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o [

7.8 Trigonometric ratios of (180°—[) in terms of those of [

Let a revolving line OA starting from the initial position OX trace out an acute
angle [ Let another line OA’ starting from the initial position OX first trace out an angle
180° and then revolves backwards through an angle [ so that in the final position of the
line, [ =180

Ler P (x,y) and P'(x', y') be two
points on OA and OA' respectively such that
OP=0P'=r. We draw PM [ OX and
PM'[C OX.

Now, in the right triangles OPM and
OP'M/,

~IPMO=[1PM'O = 90°,
_/POM =[]P'OM' and OP =OP".
[ “IOPM [ 1OP'M’
So, we have Fig. 7.6

I x'=—=x (U x and x' have opposite signs)
and y'=y (U] y and y" have the same sign)

Now,
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and

Examples :

7.9 Trigonometric ratios of (180°+ ") in terms of those of [

Let a revolving line OA starting from the initial position OX trace out an acute
angle [. Let another line OA’ starting from the initial position OX first trace out an angle
180° and further revolve through an angle ] in the anti-clockwise direction so that in the
final position of the line, [ '=180° + [

Ler P (x,y) and P'(x', y") be two points
on OA and OA’ respectively such that
OP=0P'=r. We draw PM [ OX and
PM'[ OX.

Now, in the right triangles OPM and
OP'M/,

" PMO = PM'O = 90°,
I POM =1 P'OM’ and OP = OP".
" TOPMEEOPM’

So, we have

Fig. 7.8

[l x'==x (] x and x' have opposite signs)
and y'=—y

(" y and y' have opposite signs)

Now,
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and

Examples :

7.10 Trigonometric ratios of (270°-]) in terms of those of I

Let a revolving line OA starting from the initial position OX trace out an acute
angle [ Let another line OA’ starting from the initial position OX first trace out an angle
270° and revolves backwards through an angle ] so that in the final position of the line,
LI XOA'=270° [

Ler P (x,y) and P'(x', y") be two
points on OA and OA’ respectively such
that OP=OP'=r. We draw PM[]0OX
and PM'[" OX.

Now, in the right triangles OPM and
OP'M/,

_IPMO=[1PM'O = 90°,
~/POM =[10P'M' and OP =OP".
N CIOPM 1 [FIP'OM’

So, we have Fig. 7.9

I x"=—y (U ]x"and y have opposite signs)
and y'=—-x (I x and y' have opposite signs)

Now,
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and

Examples :

7.11 Trigonometric ratios of (270°+") in terms of those of [

Let a revolving line OA starting from the initial position OX trace out an acute
angle . Let another line OA’ starting from the initial position OX first trace out an angle
270° and further revolves through an angle [
the final position of the line, [ '=270°+[1.

Let P(x,y) and P'(x’, ") be two
points on OA and OA' respectively such
that OP = OP'=r. We draw PM ' OX and
PM'[[1OX.

Now, in the right triangles OPM and
OP'M/,

L. PMO =L PM'O= 90°,
L POM=[OPM' and OP =OP".
. FOPM [T [P'OM’

So, we have

] x'=y (U x'and y have the same sign)

Fig. 7.10

and y'=—x ("] x and y' have opposite signs)

Now,
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and

Examples : ‘

7.12 Trigonometric ratios of (360°() in terms of those of [

When a revolving line OA starting from the initial position OX makes a complete
revolution in the anti-clockwise direction, it traces out an angle 360° and the line returns
to the initial position OX. So, when the revolving line traces out an angle (360°+), the
final position of the line will be the same as that of the line tracing out an angle [. Hence,
the trigonometric ratios of (360° +[)) are the same as those of [. By a similar argument,
the trigonometric ratios of (360° —[7) are the same as those of (—[)).

[ sin (360° —[)) =sin (- )=—sin[
cos (360° —[)=cos (<) =cos |
tan (360° —[)) =tan (- )= —tan[_
cot (360° —[)=cot (-{)=—cot[_
sec (360° —[) =sec ()= secl
cosec (360°-) = cosec (- [ |
And, sin (360°+[])=sin|
cos (360° +[[)) = cos [
tan (360° +[]) = tan [ |
cot (360° + ) = cot [
sec (360° +[)=sec

cosec (360° + [1]) = cosec [~
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Here, it can be easily seen that any multiple of 360° can be added or subtracted
from an angle without altering the trigonometric ratios of the angle.

Thus, for any integer n, sin (n % 360°[]) = sin ("] ]) and so on.

Note : The results established for allied angles based on the assumption that
] is acute are also valid for any value of [[] without restriction.

Example 1.

Solution :

Example 2.

Solution :

Show that

(i) cos 420°
= cos (360° + 60°)
= cos 60° = I
(i) tan (—1050°) = —tan 1050°, ( tan (-{ |
= —tan (3 x 360° —30°)
= —tan (—30°)

~ (~ tan 30°) = tan 30°

Find the values of the sine, cosine and tangent of the following
angles :
(1) 120° (i) —480° (ii1) 495°

@)
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(i) sin(—480°)=—-sin480° ([ |sin({)=—sin[]
—sin (360° + 120°)
—sin 120° =—sin (90° + 30°)

:
cos (—480°) = cos480° ([ cos (- [ |
cos (360° + 120°)
cos 120° = cos (90° + 30°)

= —sin30°=-
tan (— 480°) =—tan 480°
—tan (360° + 120°)
—tan 120° = — tan (90° + 30°)
— (= cot 30°) = cot 30° = m
(i11) sin495° = sin (360° + 135°) =sin 135°
sin (90° + 45°)

-

cos 495° = cos (360° + 135°) = cos 135°
cos (90° +45°)

:
tan 495° = tan (360° + 135°) =tan 135°
= tan (90° + 45°)
= —cot45°=-1
Example 3.  Simplify :
(1)  sin420° cos 390° + cos (— 660°) sin (— 330°)

(i)

(iif)



Solution :

Q)

(i)

Trigonometry

The given expression
sin 420° cos 390° + cos (—660°) sin (— 330°)

= sin (360° + 60°) cos (360° + 30°) + cos (— 2 x 360° + 60°)
sin (— 360° + 30°)

= sin 60° cos 30° + cos 60° sin 30°

The given expression

and

[ the given expression

151
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7.13 Solution of Trigonometric Equations

An equation involving one or more trigonometric functions (ratios) of a variable
(angle) is called a trigonometric equation. A value of the unknown angle which satisfies
a trigonometric equation is called a solution or a root of the equation.
And, to solve a trigonometric equation means to find the solutions (roots) of the equation.

In the previous articles, we have seen that the values of a trigonometric ratio of
coterminus angles (angles whose terminal sides are the same) are the same. Thus, in
general, a trigonometric equation has infinitely many solutions for if [ is a solution of a
trigonometric equation, then the infinitely many angles which are coterminus with [ are
also solutions of the equation. The solutions [~
0° 1171 < 360° are referred to as principal solutions. And, the infinitely many solutions of
a trigonometric equation constitute the general solution of the equation which in most cases
can be represented by an expression in terms of niZ.

Let us consider the equation ‘

We know that and 1.€.
Thus, [ =30° and [']

Now, the angles coterminus with 30° are given by n x 360° + 30°, #nZ and they

) (RS —690°, —330°, 30°, 390°, 750° ..ccceees creeeeeee e 0]
And, the angles coterminus with 150° are given by n x 360° + 150°, niZ, and they
) (S —570°, =210°, 150°, 510°, 870° .ccecevvver e (i)

Now, all the angles in (i) and (ii) are the solutions of the given equation. They
constitute the general solution of the equation and they can be represented by the
expression n X 180° + (— 1) 30°, n71Z (as you can check out).

In this chapter, we shall not be concerned with the general solution of a
trigonometric equation which will be dealt with in higher classes. Here, we shall be
concerned with only solutions in a given range.

Example 4. Solve (i) |

(i1) cot[ | +tan[|=2cosec!, (0°<[1<360°)

Solution : 1)
= N
Casel :
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Now, we have ,

Also,

Le.

Here, the principal solutions are 30° and 150°.

And, the angles in the range — 360° <[< 360° and coterminus with 30° and 150°
are —360° + 30°, — 360° + 150°, 30° and 150° i.e. —330°, —210°, 30° and 150°.

m N

(Note : To find angles coterminus with a given angle, add integral multiples of
360° to the angle.)

Case Il : ‘

We have,

.|

Also,

i.e. ]

The principal solutions are 210° and 330°.

And, the angles in the range — 360° <[ <360° and coterminus with 210° and 330°
are —360° + 310°, —360° + 330°, 210° and 330° i.e. — 150°, —30°, 210° and 330°.

Il N

Combining the two cases, we have the solutions are [ = [1130°, [ 150°, [
and [

() cotl +tan[|=2cosecll (0°<[]<360°)

|

(|
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I 2sin[|cosl —sin[|=0
I sinf (2cosl|-1)=0
[ Either sin[ /=0 or2cos |-1=0

Here, sin! =0 is neglected because if sin[ =0, then and

are undefined.

[ We have, 2 cosl|-1=0

(|

cos (360° — 60°)
cos 300°.

Here, the principal solutions are 60° and 300° and they are the only solutions in
the given range 0° <[ <360°.

[ the solutions are [

Remark : To find solutions of a trigonometric equation in a given range, find the
principal solutions first and then find the angles in the given range
which are coterminus with the principal solutions.

EXERCISE 7.1
1.  Write down the values of the trigonometric ratios of the following angles :
(1) —150° (i) 690° (11) 840° (iv) —1530°
2. Find the value of:

(i) sin4620° (i) cos870°  (iii) (iv)

3. Show that :

(i) sin(540° +[))=—sin[" (i) cot (1 —630°) =—tan [

(iif) (iv) sin (—360°—[7)=—sin[
4.  Simplify :

(1) sin405° cos 300° — cos 420° sin 225°
(@) sin 420° cos 390° + cos (— 660°) sin (—330°)
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(i)

(iv)

V)

(Vi) cos 24° + cos 55° + cos 125° + cos 204° + cos 300°

Show that :

)

(ii)

(iif)

(iv) cos mr1=(—1)", where n is any integer (positive or negative or zero)
) , where n is zero, or any integer (positive or negative)
Solve for [ [

() secl=2 W

(i) tan®[]+ cot’[1=2 (iv) 2cos’[1—=3cos[1+1=0
\J)

If A, B, C denote the angles of a triangle, prove that

O

o L

G

o E
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8. (a) IfA, B, C, D are the angles of a quadrilateral, then show that

(b) If the quadrilateral ABCD is cyclic, then prove that
(i sinB=sinD
(i) cos A+ cosB+cosC+cosD=0
(i) tan A +tan B +tan C +tan D = 0.
9. Show that

@ L

ANSWER

(iv)

—1, 0, undefined, 0, undefined, —1.

2. () (ii) - i) [ Gv) -1
4. G ) 1 Gi) 2 Gv) 9 v 1 (vi) I
6. () [45°, [I35°, [225°, [B315°
() 60°, —300°
(i) [745°, [I135°, [225°, [315°
(v) [160°, [1300°
(v) 30°,  120°,  210°,  300° —60° —150°, —240°, —330°
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CHAPTER 8
STATICS

8.1 Introduction

We first get ourselves familiar with some fundamental concepts and terms.
Matter is anything that occupies space and can be perceived by our senses.

A body is a portion of matter limited in all directions, having a definite shape and
size and occupying some definite space.

A force is that which changes or tends to change, the state of rest or of uniform
motion of a body.

A rigid body is one whose size and shape do not alter when acted on by any
forces whatsoever, so that the distance between any pair of particles in it remains invariable.

A perfectly rigid body does not exist in nature. Bodies do change their shape as
well as size to some extent under great pressure. But, under ordinary forces, however,
the alterations are very slight and in many cases can be ignored. Thus, in problems where
action of forces on bodies are concerned, unless otherwise stated, we assume bodies to
be perfectly rigid.

A particle is a body of infinitely small dimensions. When we speak of a body as
a particle, we mean that we are not concerned with its actual dimensions and that we
can represent its position simply by a mathematical point.

Mechanics is that branch of Science which deals with the action of forces on
bodies. When acted upon by forces, a body may move or remain at rest relative to its
surroundings and accordingly Mechanics has two parts namely Dynamics and Statics.
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Dynamics is that part of Mechanics which deals with forces which do not neutralise and
therefore cause non-uniform motion and this has been studied in class IX.

Statics is that part of Mechanics which deals with bodies at rest when acted on
by forces or with the relations between the forces which keep a rigid body (or a system
of bodies) at rest.

Equilibrium

If a system of forces acting on a body keeps it at rest, then the forces are said to
be in equilibrium.

8.2 Representation of a force

A force has a given magnitude and acts at a particular point of a body in a definite
direction. In other words, a force has a definite magnitude and direction and as such it is
a vector quantity.

Now, a line segment has also a length and a direction and can be drawn through
a particular point. Thus, a line segment drawn through the point of application of a force
can represent the force completely in magnitude, direction and position, the magnitude of
the force being represented on a suitably chosen scale by the length of the line segment
drawn, the direction of the line segment representing the direction of the force, the
extremity of the line segment being at the point of application of the force.

For example, if the line segment AB represents a R
force R, the direction of the line segment from A to B A ' B
represents the direction of R and the length AB of the Fig. 8.1

segment represents the magnitude of R on some suitable

scale.

If instead of AB, we write BA, it represents the same force with its direction
reversed. The force represented by the line segment AB is denoted in vector notation by

|

Note : 1. The sense of direction of a force represented by a line segment AB is
from A to B.

2. The magnitude of a force is proportional to the length of the line
segment representing it.
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8.3 The principle of transmissibility of a force

The effect of a force acting on a rigid body at any point is unaltered if its point of
application is transferred to any other point on its line of action, provided the two points
are in the body.

Suppose a force P acts at a point A of a rigid body
along the line AX. At any other point B of the body in

AX, introduce along the same line, two equal and opposite PP P
forces each equal to P. The force P along AB and the A B X
force P along BA, being equal and opposite, balance each Fig. 8.2 ‘

other and we are left with the force P acting at B along
BX, which is thus equivalent to the original force P at A.

8.4 Some special forces
(i) Weight
The weight of a body is the force with which the earth attracts the body. It is

proportional to the mass of the body, i.e., the quantity of matter in the body and its
direction is vertically downwards.

(i) Reaction

According to Newton’s third law of motion, to every action there corresponds an
equal and opposite reaction. Thus in a system of two bodies, A and B if A exerts a
force P (action) on B, then the body B also exerts an equal force P (reaction) in the
opposite direction on A.

(iii) Tension

When a string is used to support a weight or to drag a body, the force exerted is
transmitted to the body through the string. Such a force exerted by means of a string is
called Tension.

If the string is of negligible weight, the tension is the same throughout its length and
is unchanged even when a portion of the string passes over a smooth surface, say, a
smooth peg or pulley.

If however, a string be knotted at any of its points to other strings or to weights,
the tension will not in general, be the same in the different portions separated by the knots.
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8.5 Resultant and Components

If two or more forces act simultaneously on a rigid body and if a single force can
be obtained whose effect on the body is the same as the joint effect of the given forces
(i.e. produces exactly the same state of motion of the body), then this single force is
known as the resultant of the given forces, and the given forces, in turn, are called the
components of the single resultant force.

Now, we shall proceed to find the resultant of two forces acting at a point on a
rigid body.
8.6 Parallelogram of forces

Statement : If two forces acting at a point on a body be represented in magnitude,
direction and sense by the two adjacent sides of a parallelogram drawn from an angular
point, then their resultant is represented in magnitude, direction and sense by the diagonal
of the parallelogram drawn from that point.

B

P
Fig. 8.3

Thus, if two forces P and Q, acting on a body at a point O, be represented in
magnitude, direction and sense by the two lines OA and OB respectively both drawn
from O, and the parallelogram OACB be completed with OA and OB as adjacent sides,
then the resultant force say R, will be represented in magnitude, direction and sense by
the diagonal OC drawn from O. Using vector notation, this law can be stated as

8.7 Analytical expression for the resultant of two given forces

Let the two forces P and Q acting at a point O at an angle | | to each other be
represented by OA and OB respectively. Complete the parallelogram OACB and join
the diagonal OC, which then, by parallelogram of forces, represents the resultant R. Let

which will give the direction of the resultant. Now, draw ||

(produced if necessary).
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B C B

) Fig. 84

Then, in fig. 8.4 (i), we have

Now, [
=P QL (
Also, from - we have

cL-AC [

Again, in fig. 8.4 (ii), we have

Now, OL=OA-LA=OA-AC.
= OA+ACL |

= PrQUI

Also, from - we have

- I
Thus, in both the figures, we have
o ad[
Now, from the right triangle OCL, we have
OC*=0L* + CL?

TR = eQEImi
-

(i)

161
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Thus, (i) and (ii) give respectively the magnitude and direction of the resultant.

Observation : In both the figures, we have

and ‘
Thus,
Corollary 1. If i.e. if the two forces P and Q are perpendicular to each other,

’ and C (D

Corollary 2. The greatest and the least values of the resultant

Since ‘ ‘ R will be the greatest when | is the greatest

i.e., when =1 or when

Then,

Also, R will be least when | is least i.e., when | =1 or when e

e, | +

Thus, the greatest value of the resultant R is P+Q and the least value is P—Q or
Q-P according as P>Q or Q>P.

8.8 Resolution (breaking up) of a given force into two components

A given force may be resolved into two components in an infinite number of ways,
for, by parallelogram of forces, if with the line segment representing the given force as
diagonal, we construct any parallelogram, the two adjacent sides of this parallelogram will
represent the two component forces having the given force as their resultant and we can
construct infinitely many such parallelograms.
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If, however, with a given force, both the directions are definitely given in which we
are to break it up into components, then these components can be uniquely determined.

Let OC represent the given force R and OX and OY be two given directions (not
necessarily perpendicular) making angles [ and . respectively with OC, on opposite sides
of it, along which we are to find the components of R.

Complete the parallelogram OACB with
diagonal OC and sides along OX and OY. Then, by
parallelogram of forces, OA and OB represent the

required components P and Q, having R as their
resultant.

Now, in the - we have
o ed

B By sine formula*, we have

Fig. 8.5

Thus, the components of R along OX and OY are -and -

respectively.
* Sine formula : In a triangle ABC,

A

where a=BC, b=AC and ¢c=AB.

You will be dealing with this formula in Trigonometry in
higher classes.
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8.9 Resolution of a force into two perpendicular components

If the two components of a given force are along two perpendicular directions, then
these components are called the resolved parts of the force along those directions.

If we have \ in the last article, then P and Q are the resolved parts of
the force R. Then from the result obtained in the previous article, we have

o

and

Thus, the resolved parts of R along and perpendicular

to OX are respectively and | I C
angle between R and OX.

Observe that the resolved part of a force in any R
direction = the force % the cosine of the angle which the
force makes with the given direction.

Also, the resolved part of a force R in a direction at ’;‘ A

right angles to itself = R cos 90° = 0. Thus, a force has Fig. 8.6
no effect in a direction perpendicular to itself.

Hence, any given force R is mathematically equivalent to (and accordingly, can be
replaced, whenever needed, by) two resolved parts, one E along a direction OX
at an angle [ to it, and another perpendicular to OX. This mode of replacing,
a given force by its two equivalent resolved parts in two suitable perpendicular directions
is particularly useful in finding the resultant of several forces simultaneously acting at a
point, as is shown in section 8.13.

Note : Resolved part of the force R represented by OC, along the direction OX is
represented by OA where A is the foot of perpendicular from C upon OX.

Theorem. The algebraic sum of the resolved parts of any two forces acting at a

point, along any direction, is equal to the resolved C

part of their resultant, in that direction.

Let OA and OB represent the two forces
P and Q acting at a point O. Complete the R
parallelogram OACB. Then the diagonal OC D
represents the resultant R.

Let OX be a line drawn in any direction M . L N
through O and let AL, BM and CN be the Fig. 8.7



Statics 165
perpendiculars drawn on it from A, B and C respectively so that OL, OM and ON
represent the resolved parts of P, Q and R respectively along OX.

From Fig. 8.7, we have
OM=AD=LN |
Now, ON=OL+LN=OL+OM

Thus, the resolved part of the resultant R along OX is equal to the algebraic sum
of the resolved parts of P and Q along OX.

Corollary : The above theorem may be generalised as follows :

If any number of forces act at a point, the algebraic sum of their resolved parts in
any direction is equal to the resolved part of their resultant in that direction.

8.10 Equilibrium of Concurrent Forces

Recall that if a number of forces acting upon a body (or a particle) keep it at rest,
then the forces are said to be in equilibrium.

We know that a number of forces acting on a body may be compounded into a
single force, called the resultant of the forces, by the parallelogram law of forces or by
the method of resolved parts. If the body is to be at rest, then the resultant of all the
forces acting on it must vanish.

When three concurrent forces are in equilibrium, we have a useful law called
“Triangle of forces” which can be applied in such a situation. This law along with its
converse, is discussed below.

8.11 Triangle of Forces

Statement : If three forces acting at a point be such as can be represented in
magnitude, direction and sense (but not in position) by the three sides of a triangle taken
in order, then the forces are in equilibrium.

Fig. 8.8
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Let the three forces P, Q, R acting at a point O be represented in magnitude,
direction and sense respectively by the sides AB, BC, CA taken in order of the triangle
ABC. Complete the parallelogram ABCD. Since AD is equal and parallel to BC, the
force Q which is represented by BC can as well be represented in magnitude and direction
by AD.

By parallelogram of forces, resultant of P and Q is represented by AC. Thus, we
are left with two forces acting at the point A, represented by AC and CA. But, AC and
CA are equal in magnitude and opposite in direction and hence they balance each other.
Thus, the resultant of P, Q, R must vanish.

Hence, the three forces are in equilibrium.
8.12 Converse of Triangle of Forces

Statement : If three forces acting at a point be in equilibrium, then they can be
represented in magnitude, direction and sense by the three sides of a triangle, taken in
order.

Let the three forces P, Q, R acting at O be in equilibrium. Draw the line segments
AB, BC, parallel to the directions of P and Q, to represent these forces respectively in
magnitude, direction and sense, on any chosen scale. Complete the parallelogram ABCD
and join the diagonal AC.

Fig. 8.9

Now, AD being equal and parallel to BC, represents the force Q as well in
magnitude, direction and sense.

Since the three forces P, Q, R are in equilibrium, R is equal and opposite to the
resultant of P and Q and therefore must be represented in magnitude, direction and sense
by CA.

Thus, we have a triangle ABC whose sides AB, BC and CA taken in order represent
the forces P, Q and R respectively and this proves the theorem.
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Note 1 : If we draw any other triangle having its sides parallel to the directions of the forces
P, Q and R, then this triangle will be similiar to and accordingly the
corresponding sides will be proportional. And, as such the three forces in this case
may as well be represented in magnitude, direction and sense by the sides of that
triangle, taken in order.

Note 2 : If three forces acting at a point be such that the sum of two of them is less
than the third, then they can never be in equilibrium, for they cannot be
represented by the sides of a triangle.

8.13 Resultant of several coplanar forces simultaneously acting at
a point

Let a number of coplanar forces P, P, P, P,, etc. be simultaneously acting at a

point O and let their directions make respectively angles | ... with a
suitably chosen direction OX in the plane. And, let OY be perpendicular to OX.

Y
P3
R
Pl

X oooab N

" Fig. 8.10

We can now replace the force P, by its resolved parts along OX and

along OY. Similarly, P, may be replaced by ‘ along OX and

along OY and so on for each of the forces.
Let R be the resultant of the given forces and let it make an angle \ with OX.

Since the resolved parts of R along OX and OY are equal to the algebraic sum of
the resolved parts of the component forces along the same directions, we have
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and ‘ ‘
Hence, or . (1)
and | ... (i1)

Equations (i) and (ii) give respectively the magnitude and direction of the resultant.

Corollary : Conditions of equilibrium of concurrent and coplanar forces.

When X=0 and Y=0, then R=0.

Therefore, the forces are in equilibrium if the sum of their resolved parts along two

perpendicular directions OX and OY vanish separately.

Conversely, if the forces are in equilibrium i.e. R=0, then it follows from (i) that

X=0 and Y=0.

Thus, the necessary and sufficient condition for the equilibrium of the concurrent and

coplanar forces are X=0O and Y=0.

Example 1. Find the magnitude of the resultant of two forces 8 kgwt and 7 kg wt

acting at an angle of 60° to each other.

Solution : Let R be the resultant of the two forces.

Then, ‘
= 13 kg wt.
Example 2. Two forces whose magnitudes are P and pct on a particle in directions

inclined at an angle of 135° to each other. Find the magnitude and direction
of the resultant.

Solution : Let R be the resultant of the two forces and let it make an angle \ with

the direction of the force P.

Then, we have




Statics 169

(|

= — cos 45°

.

And,

N

Hence, the resultant is a force equal to P at right angles to the direction of the first
component.

Example 3. Find the greatest and the least resultants of two forces whose magnitudes
are 12kgwt and 8 kg wt.

Solution :  The greatest resultant = 12+8
20 kg wt
and the least resultant =12-8

= 4 kg wt.

Example 4. Two forces acting at a point have got their resultant 10 when acting at
right angles and their least resultant is 2. Find their greatest resultant and
also the resultant when they act at an angle 60° to each other.

Solution : Let P and Q be the two forces (P>Q).

Then, while acting perpendicularly, we have

resultant = 10

B P2+ Q? =100 .cooeeverrerennee. (1)
Also, their least resultant = 2
P-Q=2
(P-Q)*=2°
P+Q>-2PQ=4
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] 100-2PQ = 4 (using (1))
| 2PQ =100 - 4

Now, the greatest resultant =

- (using (i) & (ii))

Also, when they act at an angle of 60°,

their resultant

Example 5.

Solution :

Example 6.

Solution :

A force of 10 kg wt is inclined at an angle of 30° to the horizontal. Find
its resolved parts along the horizontal and the vertical directions.

The resolved parts along the horizontal and the vertical directions are 10

cos 30° kg wt and 10 sin 30° kg wt respectively i.e. | kg wt and 5
kg wt.
Forces of magnitudes 2, , 5, and 2 kg wt respectively act at one

angular point of a regular hexagon towards the five other angular points.
Find the magnitude and direction of their resultant.

Let ABCDEF be the regular E D
hexagon and let the given forces
act at the point A as shown in the

figure.
Let the resultant R make an angle
|| with the side AB.

Now, resolving the given forces 7 ]
along two perpendicular lines AB
and AE, we have 30000

‘ T Fig. 8.11




Example 7.

Solution :
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|
T R=10 kg wt.

Also,

|
Hence, the resultant is 10 kg wt and acts along AD.

Two forces of magnitudes 3P and 2P respectively have a resultant R. If
the first one is doubled, the magnitude of the resultant is doubled. Find
the angle between the forces.

Let l

Then, we have
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Example 8. The sum of two forces is 18N and the resultant, whose direction is
perpendicular to the lesser of the two forces, is 12N. Find the magnitudes
of the two forces.

Solution :  Let P and Q be the two forces (Q>P). D C
Then, P + Q =18 ............. (1)
Also, from the figure 8.12, we have in the 1t BAC,
BC? = AB*+ AC? Q I2 Q
\_[ Q*=P*+ 122
ﬁ Q*-P2=144
] Q+P)(Q-P)=144
m 18(Q — P) = 144 [using (i)] AFig.P&D
\_[ Q-P=8...... (ii)
Solving (i) and (ii), we have Q=13 and P = 5
B the magnitudes of the two forces are 13N and 5N.

EXERCISE 8.1

1. Find the magnitude of the resultant of the following pair of forces inclined to each
other at the given angle.

() 3N and 4N, 60°
(i) 10kgwtand | kg wt, 45°
(i) 24N and 7N, 90°
(iv) 5N and 9N, 120°
(v) 8kgwtand| | kgwt 150°

2. Find the resolved parts of each of the following forces whose inclination to one of
the resolved parts is given alongside :

@ 16N, 30° (i) 50kg wt, 60° (iii)) 20N, 120° (iv) E kg wt, 135°.
3. Find the angle between two equal forces P when their resultant is equal to P.
(Equal forces means forces with equal magnitude).

4.  Two forces acting at an angle of 60° have a resultant equal to kg wt. If one of
the forces is 2 kg wt, find the other.
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12.

13.

14.

15.

16.
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Two equal forces act on a particle. Find the angle between them if the square of
their resultant is equal to three times their product.

Find the magnitudes of two forces such that, if they act at right angles, their resultant
is and if they act at an angle of 60°, their resultant is

The greatest and the least resultants of two forces of given magnitudes acting at a
point are 16 kg wt and 4 kg wt respectively. Find the magnitude of their resultant
when they are at an angle of 60° with one another.

Two forces act at an angle of 120°. If the greater force is 80N and the resultant is at
right angles to the smaller, find the smaller force.

Two forces equal to 2P and P respectively act on a particle. If the first is doubled
and the second is increased by 12, the direction of the resultant remains unaltered.
Find the value of P.

If the resultant of two forces acting on a particle be at right angles to one of them
and its magnitude be one-third of the magnitude of the other, show that the ratio of
the larger force to the smaller is | .

The resultant of forces P and Q is R; if Q is doubled, R is doubled and if Q is
reversed, R is again doubled. Show that

Resolve a force of 50N into two forces making angles of 90° and 45° with it on
opposite sides.

If a force P is resolved into two component forces and if one component is at right
angles to the force and equal to it in magnitude, find the magnitude and direction of
the other component.

Forces P and Q, whose resultant is R, act at a point O. If any transversal cuts the
line of action of the forces P, Q, R at the points L, M, N respectively, then show
that

Forces equal to 3N, 4N, 5N and 6N act on a particle in directions respectively due
north, south, east and west. Find the magnitude and direction of the resultant.

Forces equal to 1 kg wt, 2 kg wt and ‘ kg wt act at a point A in the directions
AP, AQ and AR respectively. If ‘and find the magnitude
and direction of the resultant.
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18.

19.

3.
6.

9.
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Forces 2P, 3P and 4P act at a point in directions parallel to the sides of an equilateral
triangle taken in order. Show that the magnitude of the resultant is

Forces of magnitudes 1, 2, 3, 4, 5 respectively act at the angular point A of a regular
hexagon ABCDEF towards the other angular points taken in order. Show that the

magnitude of the resultant is 2,/19+10+/3 and tan0 = 5+J4§«/§’ where ¢ is the
angle which the resultant makes with AB.

The resultant of two forces P and Q is +/3Q at an angle 30° with P. Show that
either P=Q or P=2Q.

ANSWERS

() V37N (i) 5410 kgwt (i) 25N (iv) J6IN (V) 4413 kg wt

(i) 83N, 8N (i) 25 kg wt, 25./3 kg wt
(i) —10N, 104/3N (iv) —5kgwt, 5 kg wt.
120° 4. 2 kg wt 5. 60°

3N and IN 7. 14 kg wt 8. 40 kg wt
12 12. 50N, 502N

13. /2P at an angle of 45° with the direction of P.

15.

J2N due south-west. 16. 4 kg wt in the direction AQ.



