

CHAPTER – 1 BINARY OPERATIONS

SOLUTIONS

Textual Questions and answers

Exercise 1.1

- 1. If E is the set of all even natural numbers and F, the set of all odd natural numbers, answer the following:
 - (a) Is addition a binary operation on F?
 - (b) Is Multiplication a binary operation on F? If yes, find whether identity element exists or not.
 - (c) Is addition a binary operation on E? If yes, find whether identity element exists or not.
 - (d) Is multiplication a binary operation on E? If yes, find whether identity element exists or not.

Soln: Here, E = the set of all even natural numbers and

F = the set of all odd natural numbers.

- (a) No, addition is not a binary operation on F because sum of two odd natural number is not an odd natural number.
- (b) Yes, multiplication is a binary operation on F because the product of any two odd natural number is again an odd natural number. 1 is the identity element on F as $x \times 1 = 1 \times x = x$, for all $x \in F$.
- (c) Yes, addition is a binary operation on E. Identity element does not exist as the additive identity, $0 \notin E$.
- (d) Yes, multiplication is a binary operation on E. Identity element does not exist as the multiplicative identity, $1 \notin E$.
- 2. State whether each of the following definitions of \ast gives a binary operation on N or not. Give justification of your answer.
 - (i) a * b = a b

Soln: * is not a binary operation for $1 * 3 = 1 - 3 = -2 \notin N$; 1, $3 \in N$.

(ii)
$$a*b = |a-b|$$

Soln: * is not a binary operation for $1 * 1 = |1 - 1| = 0 \notin N$; $1 \in N$.

(iii)
$$a * b = a^2 b$$

Soln: * is a binary operation for $a*b = a^2b \in N$, a, $b \in N$.

(iv)
$$a * b = b$$

Soln: * is a binary operation for $a * b = b \in N$, $a, b \in N$.

(v)
$$a * b = a + ab$$

Soln: * is a binary operation for $a * b = a + ab \in N$, $\forall a, b \in N$.

(vi)
$$a * b = a^b$$

Soln: * is a binary operation for $a * b = a^b \in N, \forall a, b \in N$.

(vii)
$$a * b = ab - 1$$

Soln: * is not a binary operation for $1 * 1 = 1.1 - 1 = 1 - 1 = 0 \notin N$; $1 \in N$

(viii)
$$a*b = ab+1$$

Soln: * is a binary operation for $a * b = ab + 1 \in N, \forall a, b \in N$.

3. Prove that the following binary operations on N are commutative but not associative:

(i)
$$a * b = 2a + 2b$$
, where $a, b \in N$.

Soln: Let $a, b \in N$.

Then,
$$a*b = 2a + 2b$$

= $2b + 2a$
= $b*a$

So, * is commutative.

Let $a,b,c \in N$.

Then,
$$a*(b*c) = a*(2b+2c)$$
,
= $2a+2(2b+2c)$,
= $2a+4b+4c$.

And,
$$(a*b)*c = (2a+2b)*c$$
,
= $2(2a+2b)+2c$,
= $4a + 4b + 2c \neq a*(b*c)$.

So, * is not associative.

OF EDUCATION (S)

ELMERATEOR TOF YOUTHOUSE (TOW)

(ii)
$$a * b = 2^{ab}$$

Soln: Let $a, b \in N$.

Then,
$$a * b = 2^{ab}$$

= 2^{ba}
= $b * a$

So, * is commutative.

Let $a,b,c \in N$.

Then,
$$a*(b*c) = a*2^{bc}$$
,
= $2^{a2^{bc}}$.

And,
$$(a*b)*c = 2^{ab}*c$$
,
= $2^{2^{ab}c}$,
 $\neq a*(b*c)$.

So, * is not associative.

(iii)
$$a * b = (a - b)^2$$

Soln: Let $a,b \in N$.

Then,
$$a*b = (a-b)^2$$

= $(b-a)^2 = b*a$.

So, * is commutative.

Let $a,b,c \in N$.

Then,
$$a*(b*c) = a*(b-c)^2$$
,
= $[a-(b-c)^2]^2$.

And,
$$(a*b)*c = (a-b)^2*c$$
,

$$= [(a-b)^2 - c]^2,$$

$$\neq a*(b*c).$$

∴ * is not associative.

ELIMBAREOR TOF YEARSONG (TOW)

(iv)
$$a * b = ab + 1$$

Soln: Let $a, b \in N$.

Then,
$$a*b = ab+1$$

= $ba+1 = b*a$.

So, * is commutative.

Let $a,b,c \in N$.

Then,
$$a*(b*c) = a*(bc+1)$$
,
 $= a(bc+1)+1$,
 $= abc+a+1$

And,
$$(a*b)*c = (ab+1)*c$$
,
 $= (ab+1)c+1$,
 $= abc+c+1$
 $\neq a*(b*c)$.

∴ * is not associative.

4. Show that the binary operation on N defined by a*b=b is associative but not commutative.

Soln:

Let
$$a,b,c \in N$$
.

Then,
$$a*(b*c) = a*c$$
,

$$= c$$

And,
$$(a*b)*c = b*c$$
,

$$= c$$

$$= a * (b * c).$$

∴ * is associative.

And,
$$a*b=b$$
 and

$$b*a = a \neq a*b$$
.

5. Show that each of the following binary operation * on Q is neither associative nor commutative.

ELMIGHATEOR TOPE YOUTHOUSE (TOOM)

(i)
$$x * y = x - y + 1$$

Soln: Let
$$x, y, z \in Q$$
.

Then,
$$x * (y * z) = x * (y - z + 1)$$

$$= x - (y - z + 1) + 1$$

$$= x - y + z - 1 + 1$$

$$= x - y + z$$

And,
$$(x * y) * z = (x - y + 1) * z$$
,
= $x - y + 1 - z + 1$,
= $x - y - z + 2$.

Thus,
$$x * (y * z) \neq (x * y) * z$$

∴ * is not associative.

And,
$$x * y = x - y + 1$$

 $y * x = y - x + 1 \neq x * y$

∴ * is not commutative.

Hence, * is neither associative nor commutative.

(ii)
$$x * y = 2x + 3y$$

Soln: Let $x, y, z \in \mathbb{Q}$.

Then,
$$x*(y*z) = x*(2y+3z)$$
,
= $2x+3(2y+3z)$,
= $2x+6y+9z$.

And,
$$(x * y) * z = (2x+3y)* z$$
,
= $2(2x+3y)+3z$,
= $4x+6y+3z \neq x*(y*z)$.

∴ * is not associative.

And,
$$x * y = x - y + 1$$

 $y * x = y - x + 1 \neq x * y$

∴ * is not commutative.

Hence, * is neither associative nor commutative.

RIMENT OF EDUCATION (S)

ALMERALE TO E VAIMONE (TOWN)

(iii)
$$x * y = x + xy$$

Soln: Let $x, y, z \in Q$.

Then,
$$x*(y*z) = x*(y+yz)$$
,
 $= x + x(y + yz)$,
 $= x + xy + xyz$.
And, $(x*y)*z = (x + xy)*z$,
 $= (x + xy) + (x + xy)z$,
 $= x + xy + xz + xyz \neq x*(y*z)$.

∴ * is not associative.

And,
$$x * y = x + xy$$

 $y * x = y + yx \neq x * y$

∴ * is not commutative.

(iv)
$$x * y = xy^2$$

Soln: Let $x, y, z \in \mathbb{Q}$.

Then,
$$x^*(y^*z) = x^*(yz^2)$$
,
 $= x(yz^2)^2$,
 $= xy^2z^4$.
And, $(x^*y)^*z = (xy^2)^*z$,
 $= xy^2z^2 \neq x^*(y^*z)$

∴ * is not associative.

And,
$$x * y = xy^2$$

$$y * x = yx^2 \neq x * y$$

.. is not commutative.

Hence, * is neither associative nor commutative. Govern

OF EDUCATION (S)

西。下沙湖里。似在(面。似)

6. Prove that the binary operation \circ on Z defined by $a \circ b = a + b - 5$, is associative as well as commutative.

Soln: Let $a, b, c \in \mathbb{Z}$.

Then,
$$a \circ (b \circ c) = a \circ (b + c - 5)$$
,
 $= a + b + c - 5 - 5$,
 $= a + b + c - 10$.
And, $(a \circ b) \circ c = (a + b - 5) \circ c$,
 $= a + b - 5 + c - 5$
 $= a + b + c - 10 = a \circ (b \circ c)$.

∴ ∘ is associative.

And,
$$a \circ b = a+b-5$$

 $b \circ a = b+a-5 = a \circ b$.

∴ ∘ is commutative.

Hence proved.

7. Prove that the binary operation * defined on Z by a*b=3a+5b is neither associative nor commutative. Also, prove that the usual multiplication on Z distributes over *.

Soln: Let $a, b, c \in \mathbb{Z}$.

Then,
$$a*(b*c) = a*(3b+5c)$$

= $3a + 5(3b + 5c)$
= $3a + 15b + 25c$

Also,
$$(a*b)*c = (3a+5b)*c$$

 $= 3(3a+5b)+5c$
 $= 9a+15b+5c$
This shows that $a*(b*c) \neq (a*b)*c$.
 $\therefore *$ is not associative.
Again, $a*b = 3a+5b$

Again,
$$a * b = 3a + 5b$$

And
$$b * a = 3b + 5a$$

This shows that $a * b \neq b * a$.

 \therefore * is not commutative.

Hence, * is neither associative nor commutative.

2nd part:

Let
$$a$$
, b , $c \in Z$.

We are to show that
$$a \times (b * c) = (a \times b) * (a \times c)$$
.

Now,
$$a \times (b * c) = a \times (3b + 5c) = 3ab + 5ac$$
.

$$And,(a \times b) * (a \times c) = ab * ac = 3ab + 5ac.$$

Thus,
$$a \times (b * c) = (a \times b) * (a \times c)$$
.

Hence, usual multiplication distributes over *.

8. Let binary operations \circ and * on R be defined by $x \circ y = 2x + 2y$ and x * y = x. Show that \circ is commutative but not associative and * is associative but not commutative. Also show that \circ distributes over *.

Soln: Let
$$x, y \in \mathbb{R}$$
.

Then,
$$x \circ y = 2x + 2y$$

$$y \circ x = 2y + 2x = x \circ y.$$

∴ ∘ is commutative.

Then,
$$x \circ (y \circ z) = x \circ (2y + 2z)$$
,
= $2x + 2(2y + 2z)$,

$$=2x+4y+4z.$$

And,
$$(x \circ y) \circ z = (2x + 2y) \circ z$$
,

$$=2(2x+2y)+2z$$

$$=4x+4y+2z\neq x\circ(y\circ z).$$

∴ ∘ is not associative.

Again,
$$x*y = x$$

$$y^* x = y \neq x^* y.$$

∴ * is not commutative.

$$x*(y*z) = x*y,$$

$$= x$$

And,
$$(x * y) * z = x * z$$
,

$$= x * (y * z).$$

∴ * is associative.

2nd part

We are to show that
$$a \circ (b * c) = (a \circ b) * (a \circ c)$$
.

Now,
$$a \circ (b * c) = a \circ b$$

$$=2a+2b$$

$$(a \circ b)*(a \circ c) = (2a+2b)*(2a+2c)$$

= $2a+2b$

$$= a \circ (b * c).$$

Hence proved.

9. Prove that the binary operation \circ on N defined by $a \circ b = \max a$ maximum of a and b is associative and commutative. Find the identity element and invertible elements of (N, \circ) .

Soln: Let $a, b, c \in N$.

Now,
$$ao(boc) = ao(maximum of b and c)$$

$$= maximum of a, b and c$$

and
$$(aob)oc = (maximum \ of \ a \ and \ b)oc$$

$$= maximum of a$$
, b and c

Thus,
$$ao(boc) = (aob)oc$$

Again,
$$aob = maximum \ of \ a \ and \ b$$

And
$$boa = maximum \ of \ b \ and \ a$$

$$= aob$$

 \therefore o is commutative.

Existence of Identity:

Let *e* an identity element for the binary operation *o*.

Then, $aoe = a \quad \forall \ a \in N$

- \Rightarrow maximum of a and e = a
- $\Rightarrow e \le a$ i.e. a natural number which is less than or equal to any natural number.

 \Rightarrow this relation holds only when $e = 1 \in N$

 \therefore 1 is the identity element.

Again, let b be the inverse of an element $a \in N$.

Then, aob = 1

 \Rightarrow the maximum of a and b = 1 i.e. the maximum between two natural number is 1.

This is possible only when a = b = 1.

- \therefore The invertible element of (N, o) is 1
- 10. Investigate the set of Integers, the set of rational numbers and the set of irrational numbers for closure under the following binary operations:
 - (ii) subtraction (iii) multiplication (iv) division.

Soln: Set of Integers (Z)

Let $a, b \in Z$ be any two elements.

Then, $a+b \in \mathbb{Z}$, $a-b \in \mathbb{Z}$, $ab \in \mathbb{Z}$ and $a \div b$ may or may not be an integer.

Hence, the set of integers is closed under addition, subtraction, multiplication but not under division.

Set of rational numbers(Q):

Let
$$a,b \in Q$$
.

Then,
$$a+b \in Q$$
, $a-b \in Q$, $ab \in Q$ and $a \div b \notin Q$ since $0,1 \in Q \Rightarrow 1 \div 0 \notin Q$

Hence, the set of rational is closed under addition, subtraction, multiplication but not and $\sqrt{2}$, $1-\sqrt{2} \in Q^0$ but $\sqrt{2}+(1-\sqrt{2})=1 \notin Q^C$, $\sqrt{2}-\sqrt{2}=0 \notin Q^C$ under division.

We know that
$$\sqrt{2}, 1 - \sqrt{2} \in Q^0$$
 but

$$\sqrt{2} + (1 - \sqrt{2}) = 1 \notin Q^C, \sqrt{2} - \sqrt{2} = 0 \notin Q^C$$

$$\sqrt{2}.\sqrt{2} = 2 \notin Q^C$$
 and $\frac{\sqrt{2}}{\sqrt{2}} = 1 \notin Q^C$

Hence, the set of irrational is not closed under addition, subtraction, multiplication and division.

11. Prove that there is no non-empty finite subset of N closed under addition

Soln: Let $H = \{1, 2, 3, ..., n\}$ be a finite subset of N.

Then, $1+n \notin H$ (because 1+n > n).

So, *H* is not closed under addition.

Hence proved.

12. Prove that the only non-empty finite subset of N closed under multiplication is $\{1\}$.

Soln: Let $A = \{1\} \subset N$.

Since, $1 \times 1 = 1 \in A$; the subset A is closed under multiplication.

Suppose $B (\neq A)$ be any non-empty finite subset of N closed under multiplication.

Since, B is non-empty and $B (\neq A)$, there exists at least a natural number $a \in B$ and $a \neq 1$.

Also, B is closed under multiplication, so $a \times a = a^2 \in B$, $a^2 \times a = a^3 \in B$ and so on.

 a, a^2, a^3, \ldots are distinct natural numbers. Since $a \ne 1$ and $a \in \mathbb{N}$, $a < a^2 < a^3 < \ldots$

So, B is infinite, which is a contradiction.

Hence, the only non-empty finite subset of N closed under multiplication is $\{1\}$.

Find whether the identity element exists or not for each of the following algebraic **13.** DE EDUCATION (S) structures:

(i) (N, +)

Soln: Let e be an identity element.

Then,
$$a + e = a = e + a \forall a \in \mathbb{N}$$
.
 $\Rightarrow e = a - a = 0 \notin \mathbb{N}$

Identity element does not exist.

Soln: Let e be an identity element.

Then,
$$a.e = a = e.a \ \forall \ a \in N$$
.

$$\Rightarrow (ae-a)=0$$

$$\Rightarrow a(e-1)=0$$

$$\Rightarrow e-1=0 \text{ or } a=0$$

$$\Rightarrow e = 1 \in N \text{ (neglecting } a = 0)$$

So, 1 is the identity element.

(iii)
$$(Z, +)$$

Soln: Let e be an identity element.

Then,
$$a + e = a = e$$
. $\forall a \in Z$.

$$\Rightarrow e = 0 \in \mathbb{Z}$$

So, 0 is the identity element.

(iv)
$$(Z,.)$$

Soln; Let *e* be an identity element.

Then,
$$ae = a = ea \forall a \in Z$$
.

$$\Rightarrow ae = a$$

$$\Rightarrow a(e-1)=0$$

$$\Rightarrow e = a \in Z \text{ (neglecting } a = 0)$$

So, 1 is the identity element.

(v)
$$(Q, +)$$

Soln: Let e be an identity element.

Then,
$$a + e = a = e + a \ \forall \ a \in Q$$
.

$$\Rightarrow$$
 a+e = a

$$\Rightarrow e = 0 \in Q$$

So, 0 is the identity element.

$$(vi)$$
 $(Q, .)$

Soln: Let *e* be an identity element.

Then,
$$ae = a = ea \forall a \in Q$$
.

$$\Rightarrow ae = a$$

$$\Rightarrow a(e-1)=0$$

$$\Rightarrow e = a \in Q \text{ (neglecting } a = 0)$$

So, 1 is the identity element.

(vii)
$$(P(S), \cap)$$

Soln: Let E be an identity element.

Then,
$$A \cap E = A = E \cap A$$
, $\forall A \in P(S)$.

$$\Rightarrow A \subseteq E$$

$$\Rightarrow$$
 E = S \in $P(S)$.

So, S is the identity element.

(viii)
$$(P(S), \cup)$$

Soln: Let E be an identity element.

Then,
$$A \cup E = A = E \cup A$$
, $\forall A \in P(S)$.

$$\Rightarrow E \subseteq A$$

$$\Rightarrow$$
 E = $\phi \in P(S)$.

So, ϕ is the identity element.

14. Let $S = \{1, 2, 3, 4, 5, 6, 7\}$. Find the identity element of the algebraic structure $(P(S), \cap)$. Also, find the inverse of $A = \{2, 4, 6\}$, if it exists.

Soln: Let E be an identity element.

Then,
$$C \cap E = C = E \cap C$$
, $\forall A \in P(S)$.

$$\Rightarrow$$
 C \subseteq E, \forall C \in P(S).

$$\Rightarrow$$
 E = S \in $P(S)$.

Thus, identity element is S.

Let B be the inverse of $A = \{2, 4, 6\}$

Then,
$$A \cap B = S = B \cap A$$
.

But, for any element $B \in P(S)$, $A \cap B = B \cap A \subset S$ [: $A \subset S$]

$$\therefore$$
 A \cap B = B \cap A \neq S, \forall B \in P(S).

Hence, the inverse does not exist.

15. Consider the binary operation * on Q defined by x*y=x+y-xy. Find the identity element of (Q,*). Also find x^{-1} for $x \in Q$. For what value of x does the inverse not exist?

Soln: Let e be an identity element of the binary operation *.

Then,
$$x * e = x = e * x$$
, $\forall x \in Q$
 $\Rightarrow x + e - ex = x$
 $\Rightarrow e - ex = 0$
 $\Rightarrow e(1 - x) = 0$
 $\Rightarrow e = 0 \in Q$ [neglecting $x = 4$]

So, 0 is the identity element.

Let y be the inverse of an element $x \in Q$.

Then,
$$x * y = e = y * x$$

$$\Rightarrow x * y = 0$$

$$\Rightarrow x + y - xy = 0$$

$$\Rightarrow y(1 - x) = -x$$

$$\Rightarrow y = \frac{x}{x - 1} \in Q, \ \forall \ x \neq 1$$

$$\Rightarrow y = x^{-1} = \frac{x}{x - 1} \in Q$$

When x = 1, inverse does not exist.

16. Form the composition table for the set S={1, 2, 3,4, 5,6} with respect to the binary operation of multiplication modulo 7. Deduce that S is closed under the operation. From the table, find the identity element and the inverse of each element of S. Also calculate 2⁶ in S.

Soln: Let * be binary operation defined on S= $\{1, 2, 3, 4, 5, 6\}$ as $x * y = x \otimes_7 y = xy \pmod{7}$.

The composition table for * is given by

\times_7	1	2	3	4	5	6.50
1	1	2	3	4	5,711	6
2	2	4	6	1	3	5
3	3	6	2	5	Bo.	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

From the table, for all $a \in S$,

$$a \times_7 1 = a = 1 \times_7 a$$

∴ identity element is 1.

and
$$1 \times_7 1 = 1 = 1 \times_7 1$$

 $2 \times_7 4 = 1 = 4 \times_7 2$
 $3 \times_7 5 = 1 = 3 \times_7 5$
 $6 \times_7 6 = 1$

 \therefore the inverse of 1, 2, 3, 4, 5, 6 are 1, 4, 5, 2, 3, 6.

Now,
$$2^6 = 64 = 7 \times 9 + 1$$

 \therefore value of 2^6 in S is 1.

17. Form the composition table for the set $S=\{0,1, 2, 3,4, 5\}$ with respect to the binary operation of addition modulo 6. From the table, find the identity element and the inverse of each element of S.

Soln: The composition table for $+_6$ on $S = \{0,1,2,3,4,5\}$ is given by

4	+6	0	1	2	3	4	5
	0	0	1	2	3	4	5
	1	1	2	3	4	5	0
	2	2	3	4	5	0	1
4	3	3	4	5	0	1	2
	4	4	5	0	1	2	3
	5	5	0	1	2	3	4

From the table, for all $a \in S$, $a +_6 0 = a = 0 +_6 a$

: identity element is 0.

And
$$0 +_6 0 = 0$$

$$1+_65 = 0 = 5+_60$$

$$2+_66 = 0 = 4+_62$$

$$3 +_6 3 = 0$$

 \therefore the inverse of 0, 1, 2, 3, 4, 5 are 0, 5, 4, 3, 2, 1

18. The composition table is given below

Soln: Given a*b = H.C.F. of a and $b: a, b \in N$.

The community is a second se The composition table is given below

*	1	2	3	4	5	6
1	1	1	Ī	1	1	1
2	1	2	1	2	1	2
3	1	1	3	1	1	3
4	1	2	1	4	1	2
5	1	1	1	1	5	1
6	1	2	3	2	1	6

Since, all the entries of the table are elements of $H = \{1, 2, 3, 4, 5, 6\}$, therefore H is closed under *.

19. Let a binary operation \circ on N be defined by $a \circ b = LCM$ of a and b. Form a composition table for the set $H = \{1, 2, 3, 4, 5\}$ with respect to \circ . State whether H is closed under \circ or not.

Soln: We have, $a \circ b = LCM$ of a and b; $a, b \in N$.

The composition table for o is given by

0	1	2	3	4	5
1	1	2	3	4	5
2	2	2	6	4	10
3	3	6	3	12	15
4	4	4	12	4	20
5	5	10	15	20	5

From the table, some elements 6, 10, 12, 15, 20 in the table are not member of H.

So, H is not closed under o.

20. Prove that the set $S = \{3n : n \in Z\}$ is closed under usual addition and multiplication. Examine the algebraic structures (S,+) and (S,-) for existence of identity and invertible elements.

Soln: Let $a, b \in S$. Then,

$$a+b=3n+3m$$
, for $n, m \in \mathbb{Z}$

$$= 3 (n + m) = 3q$$
, where $q = (n + m) \in Z$

$$\Rightarrow a+b \in S$$
.

$$ab = 3n \times 3m$$
, for $n, m \in \mathbb{Z}$

= 3p, where p=3
$$nm \in Z$$

$$\Rightarrow ab \in S$$
.

Thus, S is closed under addition and multiplication.

For
$$(S, +)$$
:

Let *e* be an identity element.

Then,
$$a + e = a = e + a \ \forall a \in S$$
.

$$\Rightarrow a + e = a$$
.

$$\Rightarrow e = 0 \in S$$
.

DE EDUCATION (S)

Let 'b' be the inverse of an element $a = 3n \in S$.

Then, a + b = 0 = b + a

$$\Rightarrow 3n + b = 0$$

$$\Rightarrow b = -3n = 3(-n)$$

So, inverse of any element 3n is 3(-n).

For (S, .)

Let e be an identity element.

Then, $a.e = a = e.a \quad \forall \ a \in S$.

$$\Rightarrow ae = a$$
,

$$\Rightarrow e = 1 \notin S$$
.

The identity element does not exist and hence inverse of any element does not exist.

